ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reueqd GIF version

Theorem reueqd 2671
Description: Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.)
Hypothesis
Ref Expression
raleqd.1 (𝐴 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
reueqd (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem reueqd
StepHypRef Expression
1 reueq1 2663 . 2 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
2 raleqd.1 . . 3 (𝐴 = 𝐵 → (𝜑𝜓))
32reubidv 2649 . 2 (𝐴 = 𝐵 → (∃!𝑥𝐵 𝜑 ↔ ∃!𝑥𝐵 𝜓))
41, 3bitrd 187 1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  ∃!wreu 2446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-cleq 2158  df-clel 2161  df-nfc 2297  df-reu 2451
This theorem is referenced by:  acexmidlemcase  5837
  Copyright terms: Public domain W3C validator