ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  creui GIF version

Theorem creui 8825
Description: The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
creui (𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem creui
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7868 . 2 (𝐴 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤)))
2 simpr 109 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
3 eqcom 2159 . . . . . . . . . 10 ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)))
4 cru 8471 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
54ancoms 266 . . . . . . . . . 10 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
63, 5syl5bb 191 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
76anass1rs 561 . . . . . . . 8 ((((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
87rexbidva 2454 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ ∃𝑥 ∈ ℝ (𝑥 = 𝑧𝑦 = 𝑤)))
9 biidd 171 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑦 = 𝑤𝑦 = 𝑤))
109ceqsrexv 2842 . . . . . . . 8 (𝑧 ∈ ℝ → (∃𝑥 ∈ ℝ (𝑥 = 𝑧𝑦 = 𝑤) ↔ 𝑦 = 𝑤))
1110ad2antrr 480 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑥 ∈ ℝ (𝑥 = 𝑧𝑦 = 𝑤) ↔ 𝑦 = 𝑤))
128, 11bitrd 187 . . . . . 6 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑦 = 𝑤))
1312ralrimiva 2530 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∀𝑦 ∈ ℝ (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑦 = 𝑤))
14 reu6i 2903 . . . . 5 ((𝑤 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑦 = 𝑤)) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
152, 13, 14syl2anc 409 . . . 4 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
16 eqeq1 2164 . . . . . 6 (𝐴 = (𝑧 + (i · 𝑤)) → (𝐴 = (𝑥 + (i · 𝑦)) ↔ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))))
1716rexbidv 2458 . . . . 5 (𝐴 = (𝑧 + (i · 𝑤)) → (∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))))
1817reubidv 2640 . . . 4 (𝐴 = (𝑧 + (i · 𝑤)) → (∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))))
1915, 18syl5ibrcom 156 . . 3 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))))
2019rexlimivv 2580 . 2 (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
211, 20syl 14 1 (𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1335  wcel 2128  wral 2435  wrex 2436  ∃!wreu 2437  (class class class)co 5821  cc 7724  cr 7725  ici 7728   + caddc 7729   · cmul 7731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-pnf 7908  df-mnf 7909  df-ltxr 7911  df-sub 8042  df-neg 8043  df-reap 8444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator