Step | Hyp | Ref
| Expression |
1 | | xp1st 6133 |
. . . . . 6
⊢ (𝑢 ∈ (𝐴 × 𝐶) → (1st ‘𝑢) ∈ 𝐴) |
2 | 1 | adantl 275 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴 × 𝐶)) → (1st ‘𝑢) ∈ 𝐴) |
3 | | xpf1o.1 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋):𝐴–1-1-onto→𝐵) |
4 | | eqid 2165 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↦ 𝑋) = (𝑥 ∈ 𝐴 ↦ 𝑋) |
5 | 4 | f1ompt 5636 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ 𝑋):𝐴–1-1-onto→𝐵 ↔ (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑧 = 𝑋)) |
6 | 3, 5 | sylib 121 |
. . . . . . 7
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑧 = 𝑋)) |
7 | 6 | simpld 111 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) |
8 | 7 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴 × 𝐶)) → ∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵) |
9 | | nfcsb1v 3078 |
. . . . . . 7
⊢
Ⅎ𝑥⦋(1st ‘𝑢) / 𝑥⦌𝑋 |
10 | 9 | nfel1 2319 |
. . . . . 6
⊢
Ⅎ𝑥⦋(1st ‘𝑢) / 𝑥⦌𝑋 ∈ 𝐵 |
11 | | csbeq1a 3054 |
. . . . . . 7
⊢ (𝑥 = (1st ‘𝑢) → 𝑋 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋) |
12 | 11 | eleq1d 2235 |
. . . . . 6
⊢ (𝑥 = (1st ‘𝑢) → (𝑋 ∈ 𝐵 ↔ ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∈ 𝐵)) |
13 | 10, 12 | rspc 2824 |
. . . . 5
⊢
((1st ‘𝑢) ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 → ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∈ 𝐵)) |
14 | 2, 8, 13 | sylc 62 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴 × 𝐶)) → ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∈ 𝐵) |
15 | | xp2nd 6134 |
. . . . . 6
⊢ (𝑢 ∈ (𝐴 × 𝐶) → (2nd ‘𝑢) ∈ 𝐶) |
16 | 15 | adantl 275 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴 × 𝐶)) → (2nd ‘𝑢) ∈ 𝐶) |
17 | | xpf1o.2 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑌):𝐶–1-1-onto→𝐷) |
18 | | eqid 2165 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐶 ↦ 𝑌) = (𝑦 ∈ 𝐶 ↦ 𝑌) |
19 | 18 | f1ompt 5636 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐶 ↦ 𝑌):𝐶–1-1-onto→𝐷 ↔ (∀𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 ∧ ∀𝑤 ∈ 𝐷 ∃!𝑦 ∈ 𝐶 𝑤 = 𝑌)) |
20 | 17, 19 | sylib 121 |
. . . . . . 7
⊢ (𝜑 → (∀𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 ∧ ∀𝑤 ∈ 𝐷 ∃!𝑦 ∈ 𝐶 𝑤 = 𝑌)) |
21 | 20 | simpld 111 |
. . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ 𝐶 𝑌 ∈ 𝐷) |
22 | 21 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴 × 𝐶)) → ∀𝑦 ∈ 𝐶 𝑌 ∈ 𝐷) |
23 | | nfcsb1v 3078 |
. . . . . . 7
⊢
Ⅎ𝑦⦋(2nd ‘𝑢) / 𝑦⦌𝑌 |
24 | 23 | nfel1 2319 |
. . . . . 6
⊢
Ⅎ𝑦⦋(2nd ‘𝑢) / 𝑦⦌𝑌 ∈ 𝐷 |
25 | | csbeq1a 3054 |
. . . . . . 7
⊢ (𝑦 = (2nd ‘𝑢) → 𝑌 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) |
26 | 25 | eleq1d 2235 |
. . . . . 6
⊢ (𝑦 = (2nd ‘𝑢) → (𝑌 ∈ 𝐷 ↔ ⦋(2nd
‘𝑢) / 𝑦⦌𝑌 ∈ 𝐷)) |
27 | 24, 26 | rspc 2824 |
. . . . 5
⊢
((2nd ‘𝑢) ∈ 𝐶 → (∀𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 → ⦋(2nd
‘𝑢) / 𝑦⦌𝑌 ∈ 𝐷)) |
28 | 16, 22, 27 | sylc 62 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴 × 𝐶)) → ⦋(2nd
‘𝑢) / 𝑦⦌𝑌 ∈ 𝐷) |
29 | | opelxpi 4636 |
. . . 4
⊢
((⦋(1st ‘𝑢) / 𝑥⦌𝑋 ∈ 𝐵 ∧ ⦋(2nd
‘𝑢) / 𝑦⦌𝑌 ∈ 𝐷) →
〈⦋(1st ‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ∈ (𝐵 × 𝐷)) |
30 | 14, 28, 29 | syl2anc 409 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴 × 𝐶)) →
〈⦋(1st ‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ∈ (𝐵 × 𝐷)) |
31 | 30 | ralrimiva 2539 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ (𝐴 × 𝐶)〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ∈ (𝐵 × 𝐷)) |
32 | 6 | simprd 113 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝑧 = 𝑋) |
33 | 32 | r19.21bi 2554 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 𝑧 = 𝑋) |
34 | | reu6 2915 |
. . . . . . . . 9
⊢
(∃!𝑥 ∈
𝐴 𝑧 = 𝑋 ↔ ∃𝑠 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠)) |
35 | 33, 34 | sylib 121 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ∃𝑠 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠)) |
36 | 20 | simprd 113 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑤 ∈ 𝐷 ∃!𝑦 ∈ 𝐶 𝑤 = 𝑌) |
37 | 36 | r19.21bi 2554 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → ∃!𝑦 ∈ 𝐶 𝑤 = 𝑌) |
38 | | reu6 2915 |
. . . . . . . . 9
⊢
(∃!𝑦 ∈
𝐶 𝑤 = 𝑌 ↔ ∃𝑡 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) |
39 | 37, 38 | sylib 121 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐷) → ∃𝑡 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) |
40 | 35, 39 | anim12dan 590 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷)) → (∃𝑠 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ ∃𝑡 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡))) |
41 | | reeanv 2635 |
. . . . . . . 8
⊢
(∃𝑠 ∈
𝐴 ∃𝑡 ∈ 𝐶 (∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) ↔ (∃𝑠 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ ∃𝑡 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡))) |
42 | | pm4.38 595 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) → ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
43 | 42 | ex 114 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 = 𝑋 ↔ 𝑥 = 𝑠) → ((𝑤 = 𝑌 ↔ 𝑦 = 𝑡) → ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)))) |
44 | 43 | ralimdv 2534 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 𝑋 ↔ 𝑥 = 𝑠) → (∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡) → ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)))) |
45 | 44 | com12 30 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡) → ((𝑧 = 𝑋 ↔ 𝑥 = 𝑠) → ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)))) |
46 | 45 | ralimdv 2534 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡) → (∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)))) |
47 | 46 | impcom 124 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
48 | 47 | reximi 2563 |
. . . . . . . . 9
⊢
(∃𝑡 ∈
𝐶 (∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) → ∃𝑡 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
49 | 48 | reximi 2563 |
. . . . . . . 8
⊢
(∃𝑠 ∈
𝐴 ∃𝑡 ∈ 𝐶 (∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) → ∃𝑠 ∈ 𝐴 ∃𝑡 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
50 | 41, 49 | sylbir 134 |
. . . . . . 7
⊢
((∃𝑠 ∈
𝐴 ∀𝑥 ∈ 𝐴 (𝑧 = 𝑋 ↔ 𝑥 = 𝑠) ∧ ∃𝑡 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑤 = 𝑌 ↔ 𝑦 = 𝑡)) → ∃𝑠 ∈ 𝐴 ∃𝑡 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
51 | 40, 50 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷)) → ∃𝑠 ∈ 𝐴 ∃𝑡 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
52 | | vex 2729 |
. . . . . . . . . . . . . . 15
⊢ 𝑠 ∈ V |
53 | | vex 2729 |
. . . . . . . . . . . . . . 15
⊢ 𝑡 ∈ V |
54 | 52, 53 | op1std 6116 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 〈𝑠, 𝑡〉 → (1st ‘𝑢) = 𝑠) |
55 | 54 | csbeq1d 3052 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 〈𝑠, 𝑡〉 → ⦋(1st
‘𝑢) / 𝑥⦌𝑋 = ⦋𝑠 / 𝑥⦌𝑋) |
56 | 55 | eqeq2d 2177 |
. . . . . . . . . . . 12
⊢ (𝑢 = 〈𝑠, 𝑡〉 → (𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ↔ 𝑧 = ⦋𝑠 / 𝑥⦌𝑋)) |
57 | 52, 53 | op2ndd 6117 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 〈𝑠, 𝑡〉 → (2nd ‘𝑢) = 𝑡) |
58 | 57 | csbeq1d 3052 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 〈𝑠, 𝑡〉 → ⦋(2nd
‘𝑢) / 𝑦⦌𝑌 = ⦋𝑡 / 𝑦⦌𝑌) |
59 | 58 | eqeq2d 2177 |
. . . . . . . . . . . 12
⊢ (𝑢 = 〈𝑠, 𝑡〉 → (𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌 ↔ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌)) |
60 | 56, 59 | anbi12d 465 |
. . . . . . . . . . 11
⊢ (𝑢 = 〈𝑠, 𝑡〉 → ((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ (𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌))) |
61 | | eqeq1 2172 |
. . . . . . . . . . 11
⊢ (𝑢 = 〈𝑠, 𝑡〉 → (𝑢 = 𝑣 ↔ 〈𝑠, 𝑡〉 = 𝑣)) |
62 | 60, 61 | bibi12d 234 |
. . . . . . . . . 10
⊢ (𝑢 = 〈𝑠, 𝑡〉 → (((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ 𝑢 = 𝑣) ↔ ((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣))) |
63 | 62 | ralxp 4747 |
. . . . . . . . 9
⊢
(∀𝑢 ∈
(𝐴 × 𝐶)((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ 𝑢 = 𝑣) ↔ ∀𝑠 ∈ 𝐴 ∀𝑡 ∈ 𝐶 ((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣)) |
64 | | nfv 1516 |
. . . . . . . . . 10
⊢
Ⅎ𝑠∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) |
65 | | nfcv 2308 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐶 |
66 | | nfcsb1v 3078 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋𝑠 / 𝑥⦌𝑋 |
67 | 66 | nfeq2 2320 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 𝑧 = ⦋𝑠 / 𝑥⦌𝑋 |
68 | | nfv 1516 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 𝑤 = ⦋𝑡 / 𝑦⦌𝑌 |
69 | 67, 68 | nfan 1553 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) |
70 | | nfv 1516 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥〈𝑠, 𝑡〉 = 𝑣 |
71 | 69, 70 | nfbi 1577 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣) |
72 | 65, 71 | nfralxy 2504 |
. . . . . . . . . 10
⊢
Ⅎ𝑥∀𝑡 ∈ 𝐶 ((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣) |
73 | | nfv 1516 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) |
74 | | nfv 1516 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦 𝑧 = 𝑋 |
75 | | nfcsb1v 3078 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦⦋𝑡 / 𝑦⦌𝑌 |
76 | 75 | nfeq2 2320 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦 𝑤 = ⦋𝑡 / 𝑦⦌𝑌 |
77 | 74, 76 | nfan 1553 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) |
78 | | nfv 1516 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦〈𝑥, 𝑡〉 = 𝑣 |
79 | 77, 78 | nfbi 1577 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦((𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑥, 𝑡〉 = 𝑣) |
80 | | csbeq1a 3054 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑡 → 𝑌 = ⦋𝑡 / 𝑦⦌𝑌) |
81 | 80 | eqeq2d 2177 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑡 → (𝑤 = 𝑌 ↔ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌)) |
82 | 81 | anbi2d 460 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑡 → ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌))) |
83 | | opeq2 3759 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑡 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝑡〉) |
84 | 83 | eqeq1d 2174 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑡 → (〈𝑥, 𝑦〉 = 𝑣 ↔ 〈𝑥, 𝑡〉 = 𝑣)) |
85 | 82, 84 | bibi12d 234 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑡 → (((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) ↔ ((𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑥, 𝑡〉 = 𝑣))) |
86 | 73, 79, 85 | cbvral 2688 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) ↔ ∀𝑡 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑥, 𝑡〉 = 𝑣)) |
87 | | csbeq1a 3054 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑠 → 𝑋 = ⦋𝑠 / 𝑥⦌𝑋) |
88 | 87 | eqeq2d 2177 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑠 → (𝑧 = 𝑋 ↔ 𝑧 = ⦋𝑠 / 𝑥⦌𝑋)) |
89 | 88 | anbi1d 461 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → ((𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ (𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌))) |
90 | | opeq1 3758 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑠 → 〈𝑥, 𝑡〉 = 〈𝑠, 𝑡〉) |
91 | 90 | eqeq1d 2174 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → (〈𝑥, 𝑡〉 = 𝑣 ↔ 〈𝑠, 𝑡〉 = 𝑣)) |
92 | 89, 91 | bibi12d 234 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → (((𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑥, 𝑡〉 = 𝑣) ↔ ((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣))) |
93 | 92 | ralbidv 2466 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑠 → (∀𝑡 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑥, 𝑡〉 = 𝑣) ↔ ∀𝑡 ∈ 𝐶 ((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣))) |
94 | 86, 93 | syl5bb 191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑠 → (∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) ↔ ∀𝑡 ∈ 𝐶 ((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣))) |
95 | 64, 72, 94 | cbvral 2688 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) ↔ ∀𝑠 ∈ 𝐴 ∀𝑡 ∈ 𝐶 ((𝑧 = ⦋𝑠 / 𝑥⦌𝑋 ∧ 𝑤 = ⦋𝑡 / 𝑦⦌𝑌) ↔ 〈𝑠, 𝑡〉 = 𝑣)) |
96 | 63, 95 | bitr4i 186 |
. . . . . . . 8
⊢
(∀𝑢 ∈
(𝐴 × 𝐶)((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ 𝑢 = 𝑣) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣)) |
97 | | eqeq2 2175 |
. . . . . . . . . . 11
⊢ (𝑣 = 〈𝑠, 𝑡〉 → (〈𝑥, 𝑦〉 = 𝑣 ↔ 〈𝑥, 𝑦〉 = 〈𝑠, 𝑡〉)) |
98 | | vex 2729 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
99 | | vex 2729 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
100 | 98, 99 | opth 4215 |
. . . . . . . . . . 11
⊢
(〈𝑥, 𝑦〉 = 〈𝑠, 𝑡〉 ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)) |
101 | 97, 100 | bitrdi 195 |
. . . . . . . . . 10
⊢ (𝑣 = 〈𝑠, 𝑡〉 → (〈𝑥, 𝑦〉 = 𝑣 ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
102 | 101 | bibi2d 231 |
. . . . . . . . 9
⊢ (𝑣 = 〈𝑠, 𝑡〉 → (((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) ↔ ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)))) |
103 | 102 | 2ralbidv 2490 |
. . . . . . . 8
⊢ (𝑣 = 〈𝑠, 𝑡〉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ 〈𝑥, 𝑦〉 = 𝑣) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)))) |
104 | 96, 103 | syl5bb 191 |
. . . . . . 7
⊢ (𝑣 = 〈𝑠, 𝑡〉 → (∀𝑢 ∈ (𝐴 × 𝐶)((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ 𝑢 = 𝑣) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡)))) |
105 | 104 | rexxp 4748 |
. . . . . 6
⊢
(∃𝑣 ∈
(𝐴 × 𝐶)∀𝑢 ∈ (𝐴 × 𝐶)((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ 𝑢 = 𝑣) ↔ ∃𝑠 ∈ 𝐴 ∃𝑡 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ((𝑧 = 𝑋 ∧ 𝑤 = 𝑌) ↔ (𝑥 = 𝑠 ∧ 𝑦 = 𝑡))) |
106 | 51, 105 | sylibr 133 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷)) → ∃𝑣 ∈ (𝐴 × 𝐶)∀𝑢 ∈ (𝐴 × 𝐶)((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ 𝑢 = 𝑣)) |
107 | | reu6 2915 |
. . . . 5
⊢
(∃!𝑢 ∈
(𝐴 × 𝐶)(𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ ∃𝑣 ∈ (𝐴 × 𝐶)∀𝑢 ∈ (𝐴 × 𝐶)((𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌) ↔ 𝑢 = 𝑣)) |
108 | 106, 107 | sylibr 133 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷)) → ∃!𝑢 ∈ (𝐴 × 𝐶)(𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌)) |
109 | 108 | ralrimivva 2548 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐷 ∃!𝑢 ∈ (𝐴 × 𝐶)(𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌)) |
110 | | eqeq1 2172 |
. . . . . 6
⊢ (𝑣 = 〈𝑧, 𝑤〉 → (𝑣 = 〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ↔ 〈𝑧, 𝑤〉 = 〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉)) |
111 | | vex 2729 |
. . . . . . 7
⊢ 𝑧 ∈ V |
112 | | vex 2729 |
. . . . . . 7
⊢ 𝑤 ∈ V |
113 | 111, 112 | opth 4215 |
. . . . . 6
⊢
(〈𝑧, 𝑤〉 =
〈⦋(1st ‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ↔ (𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌)) |
114 | 110, 113 | bitrdi 195 |
. . . . 5
⊢ (𝑣 = 〈𝑧, 𝑤〉 → (𝑣 = 〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ↔ (𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌))) |
115 | 114 | reubidv 2649 |
. . . 4
⊢ (𝑣 = 〈𝑧, 𝑤〉 → (∃!𝑢 ∈ (𝐴 × 𝐶)𝑣 = 〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ↔ ∃!𝑢 ∈ (𝐴 × 𝐶)(𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌))) |
116 | 115 | ralxp 4747 |
. . 3
⊢
(∀𝑣 ∈
(𝐵 × 𝐷)∃!𝑢 ∈ (𝐴 × 𝐶)𝑣 = 〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐷 ∃!𝑢 ∈ (𝐴 × 𝐶)(𝑧 = ⦋(1st
‘𝑢) / 𝑥⦌𝑋 ∧ 𝑤 = ⦋(2nd
‘𝑢) / 𝑦⦌𝑌)) |
117 | 109, 116 | sylibr 133 |
. 2
⊢ (𝜑 → ∀𝑣 ∈ (𝐵 × 𝐷)∃!𝑢 ∈ (𝐴 × 𝐶)𝑣 = 〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉) |
118 | | nfcv 2308 |
. . . . 5
⊢
Ⅎ𝑧〈𝑋, 𝑌〉 |
119 | | nfcv 2308 |
. . . . 5
⊢
Ⅎ𝑤〈𝑋, 𝑌〉 |
120 | | nfcsb1v 3078 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝑋 |
121 | | nfcv 2308 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑤 / 𝑦⦌𝑌 |
122 | 120, 121 | nfop 3774 |
. . . . 5
⊢
Ⅎ𝑥〈⦋𝑧 / 𝑥⦌𝑋, ⦋𝑤 / 𝑦⦌𝑌〉 |
123 | | nfcv 2308 |
. . . . . 6
⊢
Ⅎ𝑦⦋𝑧 / 𝑥⦌𝑋 |
124 | | nfcsb1v 3078 |
. . . . . 6
⊢
Ⅎ𝑦⦋𝑤 / 𝑦⦌𝑌 |
125 | 123, 124 | nfop 3774 |
. . . . 5
⊢
Ⅎ𝑦〈⦋𝑧 / 𝑥⦌𝑋, ⦋𝑤 / 𝑦⦌𝑌〉 |
126 | | csbeq1a 3054 |
. . . . . 6
⊢ (𝑥 = 𝑧 → 𝑋 = ⦋𝑧 / 𝑥⦌𝑋) |
127 | | csbeq1a 3054 |
. . . . . 6
⊢ (𝑦 = 𝑤 → 𝑌 = ⦋𝑤 / 𝑦⦌𝑌) |
128 | | opeq12 3760 |
. . . . . 6
⊢ ((𝑋 = ⦋𝑧 / 𝑥⦌𝑋 ∧ 𝑌 = ⦋𝑤 / 𝑦⦌𝑌) → 〈𝑋, 𝑌〉 = 〈⦋𝑧 / 𝑥⦌𝑋, ⦋𝑤 / 𝑦⦌𝑌〉) |
129 | 126, 127,
128 | syl2an 287 |
. . . . 5
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 〈𝑋, 𝑌〉 = 〈⦋𝑧 / 𝑥⦌𝑋, ⦋𝑤 / 𝑦⦌𝑌〉) |
130 | 118, 119,
122, 125, 129 | cbvmpo 5921 |
. . . 4
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 〈𝑋, 𝑌〉) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐶 ↦ 〈⦋𝑧 / 𝑥⦌𝑋, ⦋𝑤 / 𝑦⦌𝑌〉) |
131 | 111, 112 | op1std 6116 |
. . . . . . 7
⊢ (𝑢 = 〈𝑧, 𝑤〉 → (1st ‘𝑢) = 𝑧) |
132 | 131 | csbeq1d 3052 |
. . . . . 6
⊢ (𝑢 = 〈𝑧, 𝑤〉 → ⦋(1st
‘𝑢) / 𝑥⦌𝑋 = ⦋𝑧 / 𝑥⦌𝑋) |
133 | 111, 112 | op2ndd 6117 |
. . . . . . 7
⊢ (𝑢 = 〈𝑧, 𝑤〉 → (2nd ‘𝑢) = 𝑤) |
134 | 133 | csbeq1d 3052 |
. . . . . 6
⊢ (𝑢 = 〈𝑧, 𝑤〉 → ⦋(2nd
‘𝑢) / 𝑦⦌𝑌 = ⦋𝑤 / 𝑦⦌𝑌) |
135 | 132, 134 | opeq12d 3766 |
. . . . 5
⊢ (𝑢 = 〈𝑧, 𝑤〉 →
〈⦋(1st ‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 = 〈⦋𝑧 / 𝑥⦌𝑋, ⦋𝑤 / 𝑦⦌𝑌〉) |
136 | 135 | mpompt 5934 |
. . . 4
⊢ (𝑢 ∈ (𝐴 × 𝐶) ↦
〈⦋(1st ‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐶 ↦ 〈⦋𝑧 / 𝑥⦌𝑋, ⦋𝑤 / 𝑦⦌𝑌〉) |
137 | 130, 136 | eqtr4i 2189 |
. . 3
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 〈𝑋, 𝑌〉) = (𝑢 ∈ (𝐴 × 𝐶) ↦
〈⦋(1st ‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉) |
138 | 137 | f1ompt 5636 |
. 2
⊢ ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 〈𝑋, 𝑌〉):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷) ↔ (∀𝑢 ∈ (𝐴 × 𝐶)〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉 ∈ (𝐵 × 𝐷) ∧ ∀𝑣 ∈ (𝐵 × 𝐷)∃!𝑢 ∈ (𝐴 × 𝐶)𝑣 = 〈⦋(1st
‘𝑢) / 𝑥⦌𝑋, ⦋(2nd
‘𝑢) / 𝑦⦌𝑌〉)) |
139 | 31, 117, 138 | sylanbrc 414 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 〈𝑋, 𝑌〉):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷)) |