![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ringideu | GIF version |
Description: The unity element of a ring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ringcl.b | ⊢ 𝐵 = (Base‘𝑅) |
ringcl.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
ringideu | ⊢ (𝑅 ∈ Ring → ∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | ringmgp 13138 | . . 3 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
3 | eqid 2177 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
4 | eqid 2177 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
5 | 3, 4 | mndideu 12781 | . . 3 ⊢ ((mulGrp‘𝑅) ∈ Mnd → ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥)) |
6 | 2, 5 | syl 14 | . 2 ⊢ (𝑅 ∈ Ring → ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥)) |
7 | ringcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
8 | 1, 7 | mgpbasg 13089 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅))) |
9 | ringcl.t | . . . . . . . . 9 ⊢ · = (.r‘𝑅) | |
10 | 1, 9 | mgpplusgg 13087 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅))) |
11 | 10 | oveqd 5891 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝑢 · 𝑥) = (𝑢(+g‘(mulGrp‘𝑅))𝑥)) |
12 | 11 | eqeq1d 2186 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((𝑢 · 𝑥) = 𝑥 ↔ (𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥)) |
13 | 10 | oveqd 5891 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝑥 · 𝑢) = (𝑥(+g‘(mulGrp‘𝑅))𝑢)) |
14 | 13 | eqeq1d 2186 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((𝑥 · 𝑢) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥)) |
15 | 12, 14 | anbi12d 473 | . . . . 5 ⊢ (𝑅 ∈ Ring → (((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))) |
16 | 8, 15 | raleqbidv 2684 | . . . 4 ⊢ (𝑅 ∈ Ring → (∀𝑥 ∈ 𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))) |
17 | 16 | reubidv 2660 | . . 3 ⊢ (𝑅 ∈ Ring → (∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))) |
18 | reueq1 2674 | . . . 4 ⊢ (𝐵 = (Base‘(mulGrp‘𝑅)) → (∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥) ↔ ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))) | |
19 | 8, 18 | syl 14 | . . 3 ⊢ (𝑅 ∈ Ring → (∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥) ↔ ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))) |
20 | 17, 19 | bitrd 188 | . 2 ⊢ (𝑅 ∈ Ring → (∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))) |
21 | 6, 20 | mpbird 167 | 1 ⊢ (𝑅 ∈ Ring → ∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ∃!wreu 2457 ‘cfv 5216 (class class class)co 5874 Basecbs 12456 +gcplusg 12530 .rcmulr 12531 Mndcmnd 12771 mulGrpcmgp 13083 Ringcrg 13132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-addcom 7910 ax-addass 7912 ax-i2m1 7915 ax-0lt1 7916 ax-0id 7918 ax-rnegex 7919 ax-pre-ltirr 7922 ax-pre-ltadd 7926 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-iota 5178 df-fun 5218 df-fn 5219 df-fv 5224 df-ov 5877 df-oprab 5878 df-mpo 5879 df-pnf 7992 df-mnf 7993 df-ltxr 7995 df-inn 8918 df-2 8976 df-3 8977 df-ndx 12459 df-slot 12460 df-base 12462 df-sets 12463 df-plusg 12543 df-mulr 12544 df-mgm 12729 df-sgrp 12762 df-mnd 12772 df-mgp 13084 df-ring 13134 |
This theorem is referenced by: isringid 13161 |
Copyright terms: Public domain | W3C validator |