ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgideu GIF version

Theorem srgideu 13943
Description: The unity element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgcl.b 𝐵 = (Base‘𝑅)
srgcl.t · = (.r𝑅)
Assertion
Ref Expression
srgideu (𝑅 ∈ SRing → ∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))
Distinct variable groups:   𝑥,𝑢,𝐵   𝑢,𝑅,𝑥   𝑢, · ,𝑥

Proof of Theorem srgideu
StepHypRef Expression
1 eqid 2229 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21srgmgp 13939 . . . 4 (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd)
3 eqid 2229 . . . . 5 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
4 eqid 2229 . . . . 5 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
53, 4mndideu 13467 . . . 4 ((mulGrp‘𝑅) ∈ Mnd → ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))
62, 5syl 14 . . 3 (𝑅 ∈ SRing → ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))
7 srgcl.t . . . . . . . . 9 · = (.r𝑅)
81, 7mgpplusgg 13895 . . . . . . . 8 (𝑅 ∈ SRing → · = (+g‘(mulGrp‘𝑅)))
98oveqd 6024 . . . . . . 7 (𝑅 ∈ SRing → (𝑢 · 𝑥) = (𝑢(+g‘(mulGrp‘𝑅))𝑥))
109eqeq1d 2238 . . . . . 6 (𝑅 ∈ SRing → ((𝑢 · 𝑥) = 𝑥 ↔ (𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥))
118oveqd 6024 . . . . . . 7 (𝑅 ∈ SRing → (𝑥 · 𝑢) = (𝑥(+g‘(mulGrp‘𝑅))𝑢))
1211eqeq1d 2238 . . . . . 6 (𝑅 ∈ SRing → ((𝑥 · 𝑢) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))
1310, 12anbi12d 473 . . . . 5 (𝑅 ∈ SRing → (((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥)))
1413ralbidv 2530 . . . 4 (𝑅 ∈ SRing → (∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥)))
1514reubidv 2716 . . 3 (𝑅 ∈ SRing → (∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥)))
166, 15mpbird 167 . 2 (𝑅 ∈ SRing → ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))
17 srgcl.b . . . 4 𝐵 = (Base‘𝑅)
181, 17mgpbasg 13897 . . 3 (𝑅 ∈ SRing → 𝐵 = (Base‘(mulGrp‘𝑅)))
19 raleq 2728 . . . 4 (𝐵 = (Base‘(mulGrp‘𝑅)) → (∀𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)))
2019reueqd 2742 . . 3 (𝐵 = (Base‘(mulGrp‘𝑅)) → (∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)))
2118, 20syl 14 . 2 (𝑅 ∈ SRing → (∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)))
2216, 21mpbird 167 1 (𝑅 ∈ SRing → ∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  ∃!wreu 2510  cfv 5318  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  .rcmulr 13119  Mndcmnd 13457  mulGrpcmgp 13891  SRingcsrg 13934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-mgp 13892  df-srg 13935
This theorem is referenced by:  issrgid  13952
  Copyright terms: Public domain W3C validator