| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srgideu | GIF version | ||
| Description: The unity element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| srgcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| srgcl.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| srgideu | ⊢ (𝑅 ∈ SRing → ∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | srgmgp 13774 | . . . 4 ⊢ (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd) |
| 3 | eqid 2206 | . . . . 5 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 4 | eqid 2206 | . . . . 5 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
| 5 | 3, 4 | mndideu 13302 | . . . 4 ⊢ ((mulGrp‘𝑅) ∈ Mnd → ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥)) |
| 6 | 2, 5 | syl 14 | . . 3 ⊢ (𝑅 ∈ SRing → ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥)) |
| 7 | srgcl.t | . . . . . . . . 9 ⊢ · = (.r‘𝑅) | |
| 8 | 1, 7 | mgpplusgg 13730 | . . . . . . . 8 ⊢ (𝑅 ∈ SRing → · = (+g‘(mulGrp‘𝑅))) |
| 9 | 8 | oveqd 5968 | . . . . . . 7 ⊢ (𝑅 ∈ SRing → (𝑢 · 𝑥) = (𝑢(+g‘(mulGrp‘𝑅))𝑥)) |
| 10 | 9 | eqeq1d 2215 | . . . . . 6 ⊢ (𝑅 ∈ SRing → ((𝑢 · 𝑥) = 𝑥 ↔ (𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥)) |
| 11 | 8 | oveqd 5968 | . . . . . . 7 ⊢ (𝑅 ∈ SRing → (𝑥 · 𝑢) = (𝑥(+g‘(mulGrp‘𝑅))𝑢)) |
| 12 | 11 | eqeq1d 2215 | . . . . . 6 ⊢ (𝑅 ∈ SRing → ((𝑥 · 𝑢) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥)) |
| 13 | 10, 12 | anbi12d 473 | . . . . 5 ⊢ (𝑅 ∈ SRing → (((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))) |
| 14 | 13 | ralbidv 2507 | . . . 4 ⊢ (𝑅 ∈ SRing → (∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))) |
| 15 | 14 | reubidv 2691 | . . 3 ⊢ (𝑅 ∈ SRing → (∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))) |
| 16 | 6, 15 | mpbird 167 | . 2 ⊢ (𝑅 ∈ SRing → ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)) |
| 17 | srgcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 18 | 1, 17 | mgpbasg 13732 | . . 3 ⊢ (𝑅 ∈ SRing → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 19 | raleq 2703 | . . . 4 ⊢ (𝐵 = (Base‘(mulGrp‘𝑅)) → (∀𝑥 ∈ 𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))) | |
| 20 | 19 | reueqd 2717 | . . 3 ⊢ (𝐵 = (Base‘(mulGrp‘𝑅)) → (∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))) |
| 21 | 18, 20 | syl 14 | . 2 ⊢ (𝑅 ∈ SRing → (∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))) |
| 22 | 16, 21 | mpbird 167 | 1 ⊢ (𝑅 ∈ SRing → ∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃!wreu 2487 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 +gcplusg 12953 .rcmulr 12954 Mndcmnd 13292 mulGrpcmgp 13726 SRingcsrg 13769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-plusg 12966 df-mulr 12967 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-mgp 13727 df-srg 13770 |
| This theorem is referenced by: issrgid 13787 |
| Copyright terms: Public domain | W3C validator |