ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgideu GIF version

Theorem srgideu 12948
Description: The unit element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgcl.b 𝐵 = (Base‘𝑅)
srgcl.t · = (.r𝑅)
Assertion
Ref Expression
srgideu (𝑅 ∈ SRing → ∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))
Distinct variable groups:   𝑥,𝑢,𝐵   𝑢,𝑅,𝑥   𝑢, · ,𝑥

Proof of Theorem srgideu
StepHypRef Expression
1 eqid 2175 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21srgmgp 12944 . . . 4 (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd)
3 eqid 2175 . . . . 5 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
4 eqid 2175 . . . . 5 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
53, 4mndideu 12692 . . . 4 ((mulGrp‘𝑅) ∈ Mnd → ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))
62, 5syl 14 . . 3 (𝑅 ∈ SRing → ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))
7 srgcl.t . . . . . . . . 9 · = (.r𝑅)
81, 7mgpplusgg 12929 . . . . . . . 8 (𝑅 ∈ SRing → · = (+g‘(mulGrp‘𝑅)))
98oveqd 5882 . . . . . . 7 (𝑅 ∈ SRing → (𝑢 · 𝑥) = (𝑢(+g‘(mulGrp‘𝑅))𝑥))
109eqeq1d 2184 . . . . . 6 (𝑅 ∈ SRing → ((𝑢 · 𝑥) = 𝑥 ↔ (𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥))
118oveqd 5882 . . . . . . 7 (𝑅 ∈ SRing → (𝑥 · 𝑢) = (𝑥(+g‘(mulGrp‘𝑅))𝑢))
1211eqeq1d 2184 . . . . . 6 (𝑅 ∈ SRing → ((𝑥 · 𝑢) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))
1310, 12anbi12d 473 . . . . 5 (𝑅 ∈ SRing → (((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥)))
1413ralbidv 2475 . . . 4 (𝑅 ∈ SRing → (∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥)))
1514reubidv 2658 . . 3 (𝑅 ∈ SRing → (∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥)))
166, 15mpbird 167 . 2 (𝑅 ∈ SRing → ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))
17 srgcl.b . . . 4 𝐵 = (Base‘𝑅)
181, 17mgpbasg 12930 . . 3 (𝑅 ∈ SRing → 𝐵 = (Base‘(mulGrp‘𝑅)))
19 raleq 2670 . . . 4 (𝐵 = (Base‘(mulGrp‘𝑅)) → (∀𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)))
2019reueqd 2680 . . 3 (𝐵 = (Base‘(mulGrp‘𝑅)) → (∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)))
2118, 20syl 14 . 2 (𝑅 ∈ SRing → (∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)))
2216, 21mpbird 167 1 (𝑅 ∈ SRing → ∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  wral 2453  ∃!wreu 2455  cfv 5208  (class class class)co 5865  Basecbs 12428  +gcplusg 12492  .rcmulr 12493  Mndcmnd 12682  mulGrpcmgp 12925  SRingcsrg 12939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12431  df-slot 12432  df-base 12434  df-sets 12435  df-plusg 12505  df-mulr 12506  df-0g 12628  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-mgp 12926  df-srg 12940
This theorem is referenced by:  issrgid  12957
  Copyright terms: Public domain W3C validator