ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgideu GIF version

Theorem srgideu 13778
Description: The unity element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgcl.b 𝐵 = (Base‘𝑅)
srgcl.t · = (.r𝑅)
Assertion
Ref Expression
srgideu (𝑅 ∈ SRing → ∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))
Distinct variable groups:   𝑥,𝑢,𝐵   𝑢,𝑅,𝑥   𝑢, · ,𝑥

Proof of Theorem srgideu
StepHypRef Expression
1 eqid 2206 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21srgmgp 13774 . . . 4 (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd)
3 eqid 2206 . . . . 5 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
4 eqid 2206 . . . . 5 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
53, 4mndideu 13302 . . . 4 ((mulGrp‘𝑅) ∈ Mnd → ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))
62, 5syl 14 . . 3 (𝑅 ∈ SRing → ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))
7 srgcl.t . . . . . . . . 9 · = (.r𝑅)
81, 7mgpplusgg 13730 . . . . . . . 8 (𝑅 ∈ SRing → · = (+g‘(mulGrp‘𝑅)))
98oveqd 5968 . . . . . . 7 (𝑅 ∈ SRing → (𝑢 · 𝑥) = (𝑢(+g‘(mulGrp‘𝑅))𝑥))
109eqeq1d 2215 . . . . . 6 (𝑅 ∈ SRing → ((𝑢 · 𝑥) = 𝑥 ↔ (𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥))
118oveqd 5968 . . . . . . 7 (𝑅 ∈ SRing → (𝑥 · 𝑢) = (𝑥(+g‘(mulGrp‘𝑅))𝑢))
1211eqeq1d 2215 . . . . . 6 (𝑅 ∈ SRing → ((𝑥 · 𝑢) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥))
1310, 12anbi12d 473 . . . . 5 (𝑅 ∈ SRing → (((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥)))
1413ralbidv 2507 . . . 4 (𝑅 ∈ SRing → (∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥)))
1514reubidv 2691 . . 3 (𝑅 ∈ SRing → (∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑢) = 𝑥)))
166, 15mpbird 167 . 2 (𝑅 ∈ SRing → ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))
17 srgcl.b . . . 4 𝐵 = (Base‘𝑅)
181, 17mgpbasg 13732 . . 3 (𝑅 ∈ SRing → 𝐵 = (Base‘(mulGrp‘𝑅)))
19 raleq 2703 . . . 4 (𝐵 = (Base‘(mulGrp‘𝑅)) → (∀𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)))
2019reueqd 2717 . . 3 (𝐵 = (Base‘(mulGrp‘𝑅)) → (∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)))
2118, 20syl 14 . 2 (𝑅 ∈ SRing → (∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥) ↔ ∃!𝑢 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)))
2216, 21mpbird 167 1 (𝑅 ∈ SRing → ∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  ∃!wreu 2487  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  .rcmulr 12954  Mndcmnd 13292  mulGrpcmgp 13726  SRingcsrg 13769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-plusg 12966  df-mulr 12967  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-mgp 13727  df-srg 13770
This theorem is referenced by:  issrgid  13787
  Copyright terms: Public domain W3C validator