ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom13 GIF version

Theorem rexcom13 2631
Description: Swap 1st and 3rd restricted existential quantifiers. (Contributed by NM, 8-Apr-2015.)
Assertion
Ref Expression
rexcom13 (∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑧,𝐵   𝑥,𝑦,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑧)

Proof of Theorem rexcom13
StepHypRef Expression
1 rexcom 2630 . 2 (∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃𝑦𝐵𝑥𝐴𝑧𝐶 𝜑)
2 rexcom 2630 . . 3 (∃𝑥𝐴𝑧𝐶 𝜑 ↔ ∃𝑧𝐶𝑥𝐴 𝜑)
32rexbii 2473 . 2 (∃𝑦𝐵𝑥𝐴𝑧𝐶 𝜑 ↔ ∃𝑦𝐵𝑧𝐶𝑥𝐴 𝜑)
4 rexcom 2630 . 2 (∃𝑦𝐵𝑧𝐶𝑥𝐴 𝜑 ↔ ∃𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
51, 3, 43bitri 205 1 (∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450
This theorem is referenced by:  rexrot4  2632
  Copyright terms: Public domain W3C validator