ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom13 GIF version

Theorem rexcom13 2635
Description: Swap 1st and 3rd restricted existential quantifiers. (Contributed by NM, 8-Apr-2015.)
Assertion
Ref Expression
rexcom13 (∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑧,𝐵   𝑥,𝑦,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑧)

Proof of Theorem rexcom13
StepHypRef Expression
1 rexcom 2634 . 2 (∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃𝑦𝐵𝑥𝐴𝑧𝐶 𝜑)
2 rexcom 2634 . . 3 (∃𝑥𝐴𝑧𝐶 𝜑 ↔ ∃𝑧𝐶𝑥𝐴 𝜑)
32rexbii 2477 . 2 (∃𝑦𝐵𝑥𝐴𝑧𝐶 𝜑 ↔ ∃𝑦𝐵𝑧𝐶𝑥𝐴 𝜑)
4 rexcom 2634 . 2 (∃𝑦𝐵𝑧𝐶𝑥𝐴 𝜑 ↔ ∃𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
51, 3, 43bitri 205 1 (∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454
This theorem is referenced by:  rexrot4  2636
  Copyright terms: Public domain W3C validator