ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom13 GIF version

Theorem rexcom13 2677
Description: Swap 1st and 3rd restricted existential quantifiers. (Contributed by NM, 8-Apr-2015.)
Assertion
Ref Expression
rexcom13 (∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑧,𝐵   𝑥,𝑦,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑧)

Proof of Theorem rexcom13
StepHypRef Expression
1 rexcom 2675 . 2 (∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃𝑦𝐵𝑥𝐴𝑧𝐶 𝜑)
2 rexcom 2675 . . 3 (∃𝑥𝐴𝑧𝐶 𝜑 ↔ ∃𝑧𝐶𝑥𝐴 𝜑)
32rexbii 2517 . 2 (∃𝑦𝐵𝑥𝐴𝑧𝐶 𝜑 ↔ ∃𝑦𝐵𝑧𝐶𝑥𝐴 𝜑)
4 rexcom 2675 . 2 (∃𝑦𝐵𝑧𝐶𝑥𝐴 𝜑 ↔ ∃𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
51, 3, 43bitri 206 1 (∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wrex 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494
This theorem is referenced by:  rexrot4  2678
  Copyright terms: Public domain W3C validator