Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexcom | GIF version |
Description: Commutation of restricted quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
rexcom | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2317 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2317 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | rexcomf 2637 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wrex 2454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 |
This theorem is referenced by: rexcom13 2640 rexcom4 2758 iuncom 3888 xpiundi 4678 addcomprg 7552 mulcomprg 7554 ltexprlemm 7574 caucvgprprlemexbt 7680 suplocexprlemml 7690 suplocexprlemmu 7692 qmulz 9596 elpq 9621 caubnd2 11094 sqrt2irr 12129 pythagtriplem19 12249 |
Copyright terms: Public domain | W3C validator |