ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom GIF version

Theorem rexcom 2641
Description: Commutation of restricted quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
rexcom (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem rexcom
StepHypRef Expression
1 nfcv 2319 . 2 𝑦𝐴
2 nfcv 2319 . 2 𝑥𝐵
31, 2rexcomf 2639 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461
This theorem is referenced by:  rexcom13  2643  rexcom4  2761  iuncom  3893  xpiundi  4685  addcomprg  7577  mulcomprg  7579  ltexprlemm  7599  caucvgprprlemexbt  7705  suplocexprlemml  7715  suplocexprlemmu  7717  qmulz  9623  elpq  9648  caubnd2  11126  sqrt2irr  12162  pythagtriplem19  12282
  Copyright terms: Public domain W3C validator