ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrot3 GIF version

Theorem ralrot3 2642
Description: Rotate three restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.)
Assertion
Ref Expression
ralrot3 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝜑)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑥,𝐶   𝑦,𝐶   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑧)

Proof of Theorem ralrot3
StepHypRef Expression
1 ralcom 2640 . . 3 (∀𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑦𝐵 𝜑)
21ralbii 2483 . 2 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑥𝐴𝑧𝐶𝑦𝐵 𝜑)
3 ralcom 2640 . 2 (∀𝑥𝐴𝑧𝐶𝑦𝐵 𝜑 ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝜑)
42, 3bitri 184 1 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460
This theorem is referenced by:  rmodislmodlem  13445  rmodislmod  13446
  Copyright terms: Public domain W3C validator