ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrot3 GIF version

Theorem ralrot3 2696
Description: Rotate three restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.)
Assertion
Ref Expression
ralrot3 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝜑)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑥,𝐶   𝑦,𝐶   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑧)

Proof of Theorem ralrot3
StepHypRef Expression
1 ralcom 2694 . . 3 (∀𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑦𝐵 𝜑)
21ralbii 2536 . 2 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑥𝐴𝑧𝐶𝑦𝐵 𝜑)
3 ralcom 2694 . 2 (∀𝑥𝐴𝑧𝐶𝑦𝐵 𝜑 ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝜑)
42, 3bitri 184 1 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513
This theorem is referenced by:  rmodislmodlem  14314  rmodislmod  14315
  Copyright terms: Public domain W3C validator