![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralrot3 | GIF version |
Description: Rotate three restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.) |
Ref | Expression |
---|---|
ralrot3 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 2653 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝜑) | |
2 | 1 | ralbii 2496 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝜑) |
3 | ralcom 2653 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | |
4 | 2, 3 | bitri 184 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wral 2468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 |
This theorem is referenced by: rmodislmodlem 13659 rmodislmod 13660 |
Copyright terms: Public domain | W3C validator |