| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen3 | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 12-Jan-2008.) |
| Ref | Expression |
|---|---|
| rgen3.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen3 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen3.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) | |
| 2 | 1 | 3expa 1205 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜑) |
| 3 | 2 | ralrimiva 2570 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜑) |
| 4 | 3 | rgen2 2583 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: reg3exmidlemwe 4615 ltsopr 7663 ltsosr 7831 ltso 8104 aptap 8677 xrltso 9871 addcncntoplem 14797 |
| Copyright terms: Public domain | W3C validator |