ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltso GIF version

Theorem ltso 8170
Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.)
Assertion
Ref Expression
ltso < Or ℝ

Proof of Theorem ltso
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltnr 8169 . . . . 5 (𝑥 ∈ ℝ → ¬ 𝑥 < 𝑥)
21adantl 277 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ) → ¬ 𝑥 < 𝑥)
3 lttr 8166 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
43adantl 277 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
52, 4ispod 4359 . . 3 (⊤ → < Po ℝ)
65mptru 1382 . 2 < Po ℝ
7 axltwlin 8160 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
87rgen3 2594 . 2 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦))
9 df-iso 4352 . 2 ( < Or ℝ ↔ ( < Po ℝ ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦))))
106, 8, 9mpbir2an 945 1 < Or ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  w3a 981  wtru 1374  wcel 2177  wral 2485   class class class wbr 4051   Po wpo 4349   Or wor 4350  cr 7944   < clt 8127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-po 4351  df-iso 4352  df-xp 4689  df-pnf 8129  df-mnf 8130  df-ltxr 8132
This theorem is referenced by:  gtso  8171  ltnsym2  8183  suprlubex  9045  fimaxq  10994
  Copyright terms: Public domain W3C validator