| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltso | GIF version | ||
| Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
| Ref | Expression |
|---|---|
| ltso | ⊢ < Or ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnr 8219 | . . . . 5 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 < 𝑥) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → ¬ 𝑥 < 𝑥) |
| 3 | lttr 8216 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
| 4 | 3 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) |
| 5 | 2, 4 | ispod 4394 | . . 3 ⊢ (⊤ → < Po ℝ) |
| 6 | 5 | mptru 1404 | . 2 ⊢ < Po ℝ |
| 7 | axltwlin 8210 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) | |
| 8 | 7 | rgen3 2617 | . 2 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦)) |
| 9 | df-iso 4387 | . 2 ⊢ ( < Or ℝ ↔ ( < Po ℝ ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦)))) | |
| 10 | 6, 8, 9 | mpbir2an 948 | 1 ⊢ < Or ℝ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 ∧ w3a 1002 ⊤wtru 1396 ∈ wcel 2200 ∀wral 2508 class class class wbr 4082 Po wpo 4384 Or wor 4385 ℝcr 7994 < clt 8177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-po 4386 df-iso 4387 df-xp 4724 df-pnf 8179 df-mnf 8180 df-ltxr 8182 |
| This theorem is referenced by: gtso 8221 ltnsym2 8233 suprlubex 9095 fimaxq 11044 |
| Copyright terms: Public domain | W3C validator |