ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltso GIF version

Theorem ltso 7976
Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.)
Assertion
Ref Expression
ltso < Or ℝ

Proof of Theorem ltso
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltnr 7975 . . . . 5 (𝑥 ∈ ℝ → ¬ 𝑥 < 𝑥)
21adantl 275 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ) → ¬ 𝑥 < 𝑥)
3 lttr 7972 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
43adantl 275 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
52, 4ispod 4282 . . 3 (⊤ → < Po ℝ)
65mptru 1352 . 2 < Po ℝ
7 axltwlin 7966 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
87rgen3 2553 . 2 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦))
9 df-iso 4275 . 2 ( < Or ℝ ↔ ( < Po ℝ ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦))))
106, 8, 9mpbir2an 932 1 < Or ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  w3a 968  wtru 1344  wcel 2136  wral 2444   class class class wbr 3982   Po wpo 4272   Or wor 4273  cr 7752   < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-po 4274  df-iso 4275  df-xp 4610  df-pnf 7935  df-mnf 7936  df-ltxr 7938
This theorem is referenced by:  gtso  7977  ltnsym2  7989  suprlubex  8847  fimaxq  10740
  Copyright terms: Public domain W3C validator