| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltso | GIF version | ||
| Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
| Ref | Expression |
|---|---|
| ltso | ⊢ < Or ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnr 8148 | . . . . 5 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 < 𝑥) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → ¬ 𝑥 < 𝑥) |
| 3 | lttr 8145 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
| 4 | 3 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) |
| 5 | 2, 4 | ispod 4350 | . . 3 ⊢ (⊤ → < Po ℝ) |
| 6 | 5 | mptru 1381 | . 2 ⊢ < Po ℝ |
| 7 | axltwlin 8139 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) | |
| 8 | 7 | rgen3 2592 | . 2 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦)) |
| 9 | df-iso 4343 | . 2 ⊢ ( < Or ℝ ↔ ( < Po ℝ ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦)))) | |
| 10 | 6, 8, 9 | mpbir2an 944 | 1 ⊢ < Or ℝ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 ∧ w3a 980 ⊤wtru 1373 ∈ wcel 2175 ∀wral 2483 class class class wbr 4043 Po wpo 4340 Or wor 4341 ℝcr 7923 < clt 8106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-po 4342 df-iso 4343 df-xp 4680 df-pnf 8108 df-mnf 8109 df-ltxr 8111 |
| This theorem is referenced by: gtso 8150 ltnsym2 8162 suprlubex 9024 fimaxq 10970 |
| Copyright terms: Public domain | W3C validator |