![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltso | GIF version |
Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
Ref | Expression |
---|---|
ltso | ⊢ < Or ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnr 7712 | . . . . 5 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 < 𝑥) | |
2 | 1 | adantl 273 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → ¬ 𝑥 < 𝑥) |
3 | lttr 7709 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
4 | 3 | adantl 273 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) |
5 | 2, 4 | ispod 4164 | . . 3 ⊢ (⊤ → < Po ℝ) |
6 | 5 | mptru 1308 | . 2 ⊢ < Po ℝ |
7 | axltwlin 7704 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) | |
8 | 7 | rgen3 2478 | . 2 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦)) |
9 | df-iso 4157 | . 2 ⊢ ( < Or ℝ ↔ ( < Po ℝ ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦)))) | |
10 | 6, 8, 9 | mpbir2an 894 | 1 ⊢ < Or ℝ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 670 ∧ w3a 930 ⊤wtru 1300 ∈ wcel 1448 ∀wral 2375 class class class wbr 3875 Po wpo 4154 Or wor 4155 ℝcr 7499 < clt 7672 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-po 4156 df-iso 4157 df-xp 4483 df-pnf 7674 df-mnf 7675 df-ltxr 7677 |
This theorem is referenced by: gtso 7714 ltnsym2 7725 suprlubex 8568 fimaxq 10414 |
Copyright terms: Public domain | W3C validator |