Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltso | GIF version |
Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
Ref | Expression |
---|---|
ltso | ⊢ < Or ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnr 7983 | . . . . 5 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 < 𝑥) | |
2 | 1 | adantl 275 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → ¬ 𝑥 < 𝑥) |
3 | lttr 7980 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
4 | 3 | adantl 275 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) |
5 | 2, 4 | ispod 4287 | . . 3 ⊢ (⊤ → < Po ℝ) |
6 | 5 | mptru 1357 | . 2 ⊢ < Po ℝ |
7 | axltwlin 7974 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) | |
8 | 7 | rgen3 2557 | . 2 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦)) |
9 | df-iso 4280 | . 2 ⊢ ( < Or ℝ ↔ ( < Po ℝ ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦)))) | |
10 | 6, 8, 9 | mpbir2an 937 | 1 ⊢ < Or ℝ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 703 ∧ w3a 973 ⊤wtru 1349 ∈ wcel 2141 ∀wral 2448 class class class wbr 3987 Po wpo 4277 Or wor 4278 ℝcr 7760 < clt 7941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-po 4279 df-iso 4280 df-xp 4615 df-pnf 7943 df-mnf 7944 df-ltxr 7946 |
This theorem is referenced by: gtso 7985 ltnsym2 7997 suprlubex 8855 fimaxq 10749 |
Copyright terms: Public domain | W3C validator |