ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltso GIF version

Theorem ltso 8121
Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.)
Assertion
Ref Expression
ltso < Or ℝ

Proof of Theorem ltso
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltnr 8120 . . . . 5 (𝑥 ∈ ℝ → ¬ 𝑥 < 𝑥)
21adantl 277 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ) → ¬ 𝑥 < 𝑥)
3 lttr 8117 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
43adantl 277 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
52, 4ispod 4340 . . 3 (⊤ → < Po ℝ)
65mptru 1373 . 2 < Po ℝ
7 axltwlin 8111 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
87rgen3 2584 . 2 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦))
9 df-iso 4333 . 2 ( < Or ℝ ↔ ( < Po ℝ ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦))))
106, 8, 9mpbir2an 944 1 < Or ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  w3a 980  wtru 1365  wcel 2167  wral 2475   class class class wbr 4034   Po wpo 4330   Or wor 4331  cr 7895   < clt 8078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-po 4332  df-iso 4333  df-xp 4670  df-pnf 8080  df-mnf 8081  df-ltxr 8083
This theorem is referenced by:  gtso  8122  ltnsym2  8134  suprlubex  8996  fimaxq  10936
  Copyright terms: Public domain W3C validator