| Step | Hyp | Ref
| Expression |
| 1 | | ltposr 7830 |
. 2
⊢
<R Po R |
| 2 | | df-nr 7794 |
. . . 4
⊢
R = ((P × P) /
~R ) |
| 3 | | breq1 4036 |
. . . . 5
⊢
([〈𝑎, 𝑏〉]
~R = 𝑥 → ([〈𝑎, 𝑏〉] ~R
<R [〈𝑐, 𝑑〉] ~R ↔
𝑥
<R [〈𝑐, 𝑑〉] ~R
)) |
| 4 | | breq1 4036 |
. . . . . 6
⊢
([〈𝑎, 𝑏〉]
~R = 𝑥 → ([〈𝑎, 𝑏〉] ~R
<R [〈𝑒, 𝑓〉] ~R ↔
𝑥
<R [〈𝑒, 𝑓〉] ~R
)) |
| 5 | 4 | orbi1d 792 |
. . . . 5
⊢
([〈𝑎, 𝑏〉]
~R = 𝑥 → (([〈𝑎, 𝑏〉] ~R
<R [〈𝑒, 𝑓〉] ~R ∨
[〈𝑒, 𝑓〉]
~R <R [〈𝑐, 𝑑〉] ~R ) ↔
(𝑥
<R [〈𝑒, 𝑓〉] ~R ∨
[〈𝑒, 𝑓〉]
~R <R [〈𝑐, 𝑑〉] ~R
))) |
| 6 | 3, 5 | imbi12d 234 |
. . . 4
⊢
([〈𝑎, 𝑏〉]
~R = 𝑥 → (([〈𝑎, 𝑏〉] ~R
<R [〈𝑐, 𝑑〉] ~R →
([〈𝑎, 𝑏〉]
~R <R [〈𝑒, 𝑓〉] ~R ∨
[〈𝑒, 𝑓〉]
~R <R [〈𝑐, 𝑑〉] ~R )) ↔
(𝑥
<R [〈𝑐, 𝑑〉] ~R →
(𝑥
<R [〈𝑒, 𝑓〉] ~R ∨
[〈𝑒, 𝑓〉]
~R <R [〈𝑐, 𝑑〉] ~R
)))) |
| 7 | | breq2 4037 |
. . . . 5
⊢
([〈𝑐, 𝑑〉]
~R = 𝑦 → (𝑥 <R [〈𝑐, 𝑑〉] ~R ↔
𝑥
<R 𝑦)) |
| 8 | | breq2 4037 |
. . . . . 6
⊢
([〈𝑐, 𝑑〉]
~R = 𝑦 → ([〈𝑒, 𝑓〉] ~R
<R [〈𝑐, 𝑑〉] ~R ↔
[〈𝑒, 𝑓〉]
~R <R 𝑦)) |
| 9 | 8 | orbi2d 791 |
. . . . 5
⊢
([〈𝑐, 𝑑〉]
~R = 𝑦 → ((𝑥 <R [〈𝑒, 𝑓〉] ~R ∨
[〈𝑒, 𝑓〉]
~R <R [〈𝑐, 𝑑〉] ~R ) ↔
(𝑥
<R [〈𝑒, 𝑓〉] ~R ∨
[〈𝑒, 𝑓〉]
~R <R 𝑦))) |
| 10 | 7, 9 | imbi12d 234 |
. . . 4
⊢
([〈𝑐, 𝑑〉]
~R = 𝑦 → ((𝑥 <R [〈𝑐, 𝑑〉] ~R →
(𝑥
<R [〈𝑒, 𝑓〉] ~R ∨
[〈𝑒, 𝑓〉]
~R <R [〈𝑐, 𝑑〉] ~R )) ↔
(𝑥
<R 𝑦 → (𝑥 <R [〈𝑒, 𝑓〉] ~R ∨
[〈𝑒, 𝑓〉]
~R <R 𝑦)))) |
| 11 | | breq2 4037 |
. . . . . 6
⊢
([〈𝑒, 𝑓〉]
~R = 𝑧 → (𝑥 <R [〈𝑒, 𝑓〉] ~R ↔
𝑥
<R 𝑧)) |
| 12 | | breq1 4036 |
. . . . . 6
⊢
([〈𝑒, 𝑓〉]
~R = 𝑧 → ([〈𝑒, 𝑓〉] ~R
<R 𝑦 ↔ 𝑧 <R 𝑦)) |
| 13 | 11, 12 | orbi12d 794 |
. . . . 5
⊢
([〈𝑒, 𝑓〉]
~R = 𝑧 → ((𝑥 <R [〈𝑒, 𝑓〉] ~R ∨
[〈𝑒, 𝑓〉]
~R <R 𝑦) ↔ (𝑥 <R 𝑧 ∨ 𝑧 <R 𝑦))) |
| 14 | 13 | imbi2d 230 |
. . . 4
⊢
([〈𝑒, 𝑓〉]
~R = 𝑧 → ((𝑥 <R 𝑦 → (𝑥 <R [〈𝑒, 𝑓〉] ~R ∨
[〈𝑒, 𝑓〉]
~R <R 𝑦)) ↔ (𝑥 <R 𝑦 → (𝑥 <R 𝑧 ∨ 𝑧 <R 𝑦)))) |
| 15 | | simp1l 1023 |
. . . . . . . . 9
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
𝑎 ∈
P) |
| 16 | | simp3r 1028 |
. . . . . . . . 9
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
𝑓 ∈
P) |
| 17 | | addclpr 7604 |
. . . . . . . . 9
⊢ ((𝑎 ∈ P ∧
𝑓 ∈ P)
→ (𝑎
+P 𝑓) ∈ P) |
| 18 | 15, 16, 17 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
(𝑎
+P 𝑓) ∈ P) |
| 19 | | simp2r 1026 |
. . . . . . . 8
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
𝑑 ∈
P) |
| 20 | | addclpr 7604 |
. . . . . . . 8
⊢ (((𝑎 +P
𝑓) ∈ P
∧ 𝑑 ∈
P) → ((𝑎
+P 𝑓) +P 𝑑) ∈
P) |
| 21 | 18, 19, 20 | syl2anc 411 |
. . . . . . 7
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
((𝑎
+P 𝑓) +P 𝑑) ∈
P) |
| 22 | | simp2l 1025 |
. . . . . . . . 9
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
𝑐 ∈
P) |
| 23 | | addclpr 7604 |
. . . . . . . . 9
⊢ ((𝑓 ∈ P ∧
𝑐 ∈ P)
→ (𝑓
+P 𝑐) ∈ P) |
| 24 | 16, 22, 23 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
(𝑓
+P 𝑐) ∈ P) |
| 25 | | simp1r 1024 |
. . . . . . . 8
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
𝑏 ∈
P) |
| 26 | | addclpr 7604 |
. . . . . . . 8
⊢ (((𝑓 +P
𝑐) ∈ P
∧ 𝑏 ∈
P) → ((𝑓
+P 𝑐) +P 𝑏) ∈
P) |
| 27 | 24, 25, 26 | syl2anc 411 |
. . . . . . 7
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
((𝑓
+P 𝑐) +P 𝑏) ∈
P) |
| 28 | | simp3l 1027 |
. . . . . . . . 9
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
𝑒 ∈
P) |
| 29 | | addclpr 7604 |
. . . . . . . . 9
⊢ ((𝑏 ∈ P ∧
𝑒 ∈ P)
→ (𝑏
+P 𝑒) ∈ P) |
| 30 | 25, 28, 29 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
(𝑏
+P 𝑒) ∈ P) |
| 31 | | addclpr 7604 |
. . . . . . . 8
⊢ (((𝑏 +P
𝑒) ∈ P
∧ 𝑑 ∈
P) → ((𝑏
+P 𝑒) +P 𝑑) ∈
P) |
| 32 | 30, 19, 31 | syl2anc 411 |
. . . . . . 7
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
((𝑏
+P 𝑒) +P 𝑑) ∈
P) |
| 33 | | ltsopr 7663 |
. . . . . . . 8
⊢
<P Or P |
| 34 | | sowlin 4355 |
. . . . . . . 8
⊢
((<P Or P ∧ (((𝑎 +P
𝑓)
+P 𝑑) ∈ P ∧ ((𝑓 +P
𝑐)
+P 𝑏) ∈ P ∧ ((𝑏 +P
𝑒)
+P 𝑑) ∈ P)) → (((𝑎 +P
𝑓)
+P 𝑑)<P ((𝑓 +P
𝑐)
+P 𝑏) → (((𝑎 +P 𝑓) +P
𝑑)<P ((𝑏 +P
𝑒)
+P 𝑑) ∨ ((𝑏 +P 𝑒) +P
𝑑)<P ((𝑓 +P
𝑐)
+P 𝑏)))) |
| 35 | 33, 34 | mpan 424 |
. . . . . . 7
⊢ ((((𝑎 +P
𝑓)
+P 𝑑) ∈ P ∧ ((𝑓 +P
𝑐)
+P 𝑏) ∈ P ∧ ((𝑏 +P
𝑒)
+P 𝑑) ∈ P) → (((𝑎 +P
𝑓)
+P 𝑑)<P ((𝑓 +P
𝑐)
+P 𝑏) → (((𝑎 +P 𝑓) +P
𝑑)<P ((𝑏 +P
𝑒)
+P 𝑑) ∨ ((𝑏 +P 𝑒) +P
𝑑)<P ((𝑓 +P
𝑐)
+P 𝑏)))) |
| 36 | 21, 27, 32, 35 | syl3anc 1249 |
. . . . . 6
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
(((𝑎
+P 𝑓) +P 𝑑)<P
((𝑓
+P 𝑐) +P 𝑏) → (((𝑎 +P 𝑓) +P
𝑑)<P ((𝑏 +P
𝑒)
+P 𝑑) ∨ ((𝑏 +P 𝑒) +P
𝑑)<P ((𝑓 +P
𝑐)
+P 𝑏)))) |
| 37 | | addclpr 7604 |
. . . . . . . . 9
⊢ ((𝑎 ∈ P ∧
𝑑 ∈ P)
→ (𝑎
+P 𝑑) ∈ P) |
| 38 | 15, 19, 37 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
(𝑎
+P 𝑑) ∈ P) |
| 39 | | addclpr 7604 |
. . . . . . . . 9
⊢ ((𝑏 ∈ P ∧
𝑐 ∈ P)
→ (𝑏
+P 𝑐) ∈ P) |
| 40 | 25, 22, 39 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
(𝑏
+P 𝑐) ∈ P) |
| 41 | | ltaprg 7686 |
. . . . . . . 8
⊢ (((𝑎 +P
𝑑) ∈ P
∧ (𝑏
+P 𝑐) ∈ P ∧ 𝑓 ∈ P) →
((𝑎
+P 𝑑)<P (𝑏 +P
𝑐) ↔ (𝑓 +P
(𝑎
+P 𝑑))<P (𝑓 +P
(𝑏
+P 𝑐)))) |
| 42 | 38, 40, 16, 41 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
((𝑎
+P 𝑑)<P (𝑏 +P
𝑐) ↔ (𝑓 +P
(𝑎
+P 𝑑))<P (𝑓 +P
(𝑏
+P 𝑐)))) |
| 43 | | addcomprg 7645 |
. . . . . . . . . . 11
⊢ ((𝑟 ∈ P ∧
𝑠 ∈ P)
→ (𝑟
+P 𝑠) = (𝑠 +P 𝑟)) |
| 44 | 43 | adantl 277 |
. . . . . . . . . 10
⊢ ((((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) ∧
(𝑟 ∈ P
∧ 𝑠 ∈
P)) → (𝑟
+P 𝑠) = (𝑠 +P 𝑟)) |
| 45 | | addassprg 7646 |
. . . . . . . . . . 11
⊢ ((𝑟 ∈ P ∧
𝑠 ∈ P
∧ 𝑡 ∈
P) → ((𝑟
+P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P
𝑡))) |
| 46 | 45 | adantl 277 |
. . . . . . . . . 10
⊢ ((((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) ∧
(𝑟 ∈ P
∧ 𝑠 ∈
P ∧ 𝑡
∈ P)) → ((𝑟 +P 𝑠) +P
𝑡) = (𝑟 +P (𝑠 +P
𝑡))) |
| 47 | 16, 15, 19, 44, 46 | caov12d 6105 |
. . . . . . . . 9
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
(𝑓
+P (𝑎 +P 𝑑)) = (𝑎 +P (𝑓 +P
𝑑))) |
| 48 | 46, 15, 16, 19 | caovassd 6083 |
. . . . . . . . 9
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
((𝑎
+P 𝑓) +P 𝑑) = (𝑎 +P (𝑓 +P
𝑑))) |
| 49 | 47, 48 | eqtr4d 2232 |
. . . . . . . 8
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
(𝑓
+P (𝑎 +P 𝑑)) = ((𝑎 +P 𝑓) +P
𝑑)) |
| 50 | 46, 16, 25, 22 | caovassd 6083 |
. . . . . . . . 9
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
((𝑓
+P 𝑏) +P 𝑐) = (𝑓 +P (𝑏 +P
𝑐))) |
| 51 | 16, 25, 22, 44, 46 | caov32d 6104 |
. . . . . . . . 9
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
((𝑓
+P 𝑏) +P 𝑐) = ((𝑓 +P 𝑐) +P
𝑏)) |
| 52 | 50, 51 | eqtr3d 2231 |
. . . . . . . 8
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
(𝑓
+P (𝑏 +P 𝑐)) = ((𝑓 +P 𝑐) +P
𝑏)) |
| 53 | 49, 52 | breq12d 4046 |
. . . . . . 7
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
((𝑓
+P (𝑎 +P 𝑑))<P
(𝑓
+P (𝑏 +P 𝑐)) ↔ ((𝑎 +P 𝑓) +P
𝑑)<P ((𝑓 +P
𝑐)
+P 𝑏))) |
| 54 | 42, 53 | bitrd 188 |
. . . . . 6
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
((𝑎
+P 𝑑)<P (𝑏 +P
𝑐) ↔ ((𝑎 +P
𝑓)
+P 𝑑)<P ((𝑓 +P
𝑐)
+P 𝑏))) |
| 55 | | ltaprg 7686 |
. . . . . . . . 9
⊢ ((𝑟 ∈ P ∧
𝑠 ∈ P
∧ 𝑡 ∈
P) → (𝑟<P 𝑠 ↔ (𝑡 +P 𝑟)<P
(𝑡
+P 𝑠))) |
| 56 | 55 | adantl 277 |
. . . . . . . 8
⊢ ((((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) ∧
(𝑟 ∈ P
∧ 𝑠 ∈
P ∧ 𝑡
∈ P)) → (𝑟<P 𝑠 ↔ (𝑡 +P 𝑟)<P
(𝑡
+P 𝑠))) |
| 57 | 56, 18, 30, 19, 44 | caovord2d 6093 |
. . . . . . 7
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
((𝑎
+P 𝑓)<P (𝑏 +P
𝑒) ↔ ((𝑎 +P
𝑓)
+P 𝑑)<P ((𝑏 +P
𝑒)
+P 𝑑))) |
| 58 | | addclpr 7604 |
. . . . . . . . . 10
⊢ ((𝑒 ∈ P ∧
𝑑 ∈ P)
→ (𝑒
+P 𝑑) ∈ P) |
| 59 | 28, 19, 58 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
(𝑒
+P 𝑑) ∈ P) |
| 60 | 56, 59, 24, 25, 44 | caovord2d 6093 |
. . . . . . . 8
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
((𝑒
+P 𝑑)<P (𝑓 +P
𝑐) ↔ ((𝑒 +P
𝑑)
+P 𝑏)<P ((𝑓 +P
𝑐)
+P 𝑏))) |
| 61 | 46, 25, 28, 19 | caovassd 6083 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
((𝑏
+P 𝑒) +P 𝑑) = (𝑏 +P (𝑒 +P
𝑑))) |
| 62 | 44, 25, 59 | caovcomd 6080 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
(𝑏
+P (𝑒 +P 𝑑)) = ((𝑒 +P 𝑑) +P
𝑏)) |
| 63 | 61, 62 | eqtrd 2229 |
. . . . . . . . 9
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
((𝑏
+P 𝑒) +P 𝑑) = ((𝑒 +P 𝑑) +P
𝑏)) |
| 64 | 63 | breq1d 4043 |
. . . . . . . 8
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
(((𝑏
+P 𝑒) +P 𝑑)<P
((𝑓
+P 𝑐) +P 𝑏) ↔ ((𝑒 +P 𝑑) +P
𝑏)<P ((𝑓 +P
𝑐)
+P 𝑏))) |
| 65 | 60, 64 | bitr4d 191 |
. . . . . . 7
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
((𝑒
+P 𝑑)<P (𝑓 +P
𝑐) ↔ ((𝑏 +P
𝑒)
+P 𝑑)<P ((𝑓 +P
𝑐)
+P 𝑏))) |
| 66 | 57, 65 | orbi12d 794 |
. . . . . 6
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
(((𝑎
+P 𝑓)<P (𝑏 +P
𝑒) ∨ (𝑒 +P 𝑑)<P
(𝑓
+P 𝑐)) ↔ (((𝑎 +P 𝑓) +P
𝑑)<P ((𝑏 +P
𝑒)
+P 𝑑) ∨ ((𝑏 +P 𝑒) +P
𝑑)<P ((𝑓 +P
𝑐)
+P 𝑏)))) |
| 67 | 36, 54, 66 | 3imtr4d 203 |
. . . . 5
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
((𝑎
+P 𝑑)<P (𝑏 +P
𝑐) → ((𝑎 +P
𝑓)<P (𝑏 +P
𝑒) ∨ (𝑒 +P 𝑑)<P
(𝑓
+P 𝑐)))) |
| 68 | | ltsrprg 7814 |
. . . . . 6
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P)) → ([〈𝑎, 𝑏〉] ~R
<R [〈𝑐, 𝑑〉] ~R ↔
(𝑎
+P 𝑑)<P (𝑏 +P
𝑐))) |
| 69 | 68 | 3adant3 1019 |
. . . . 5
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
([〈𝑎, 𝑏〉]
~R <R [〈𝑐, 𝑑〉] ~R ↔
(𝑎
+P 𝑑)<P (𝑏 +P
𝑐))) |
| 70 | | ltsrprg 7814 |
. . . . . . 7
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑒 ∈
P ∧ 𝑓
∈ P)) → ([〈𝑎, 𝑏〉] ~R
<R [〈𝑒, 𝑓〉] ~R ↔
(𝑎
+P 𝑓)<P (𝑏 +P
𝑒))) |
| 71 | 70 | 3adant2 1018 |
. . . . . 6
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
([〈𝑎, 𝑏〉]
~R <R [〈𝑒, 𝑓〉] ~R ↔
(𝑎
+P 𝑓)<P (𝑏 +P
𝑒))) |
| 72 | | ltsrprg 7814 |
. . . . . . . 8
⊢ (((𝑒 ∈ P ∧
𝑓 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P)) → ([〈𝑒, 𝑓〉] ~R
<R [〈𝑐, 𝑑〉] ~R ↔
(𝑒
+P 𝑑)<P (𝑓 +P
𝑐))) |
| 73 | 72 | ancoms 268 |
. . . . . . 7
⊢ (((𝑐 ∈ P ∧
𝑑 ∈ P)
∧ (𝑒 ∈
P ∧ 𝑓
∈ P)) → ([〈𝑒, 𝑓〉] ~R
<R [〈𝑐, 𝑑〉] ~R ↔
(𝑒
+P 𝑑)<P (𝑓 +P
𝑐))) |
| 74 | 73 | 3adant1 1017 |
. . . . . 6
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
([〈𝑒, 𝑓〉]
~R <R [〈𝑐, 𝑑〉] ~R ↔
(𝑒
+P 𝑑)<P (𝑓 +P
𝑐))) |
| 75 | 71, 74 | orbi12d 794 |
. . . . 5
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
(([〈𝑎, 𝑏〉]
~R <R [〈𝑒, 𝑓〉] ~R ∨
[〈𝑒, 𝑓〉]
~R <R [〈𝑐, 𝑑〉] ~R ) ↔
((𝑎
+P 𝑓)<P (𝑏 +P
𝑒) ∨ (𝑒 +P 𝑑)<P
(𝑓
+P 𝑐)))) |
| 76 | 67, 69, 75 | 3imtr4d 203 |
. . . 4
⊢ (((𝑎 ∈ P ∧
𝑏 ∈ P)
∧ (𝑐 ∈
P ∧ 𝑑
∈ P) ∧ (𝑒 ∈ P ∧ 𝑓 ∈ P)) →
([〈𝑎, 𝑏〉]
~R <R [〈𝑐, 𝑑〉] ~R →
([〈𝑎, 𝑏〉]
~R <R [〈𝑒, 𝑓〉] ~R ∨
[〈𝑒, 𝑓〉]
~R <R [〈𝑐, 𝑑〉] ~R
))) |
| 77 | 2, 6, 10, 14, 76 | 3ecoptocl 6683 |
. . 3
⊢ ((𝑥 ∈ R ∧
𝑦 ∈ R
∧ 𝑧 ∈
R) → (𝑥
<R 𝑦 → (𝑥 <R 𝑧 ∨ 𝑧 <R 𝑦))) |
| 78 | 77 | rgen3 2584 |
. 2
⊢
∀𝑥 ∈
R ∀𝑦
∈ R ∀𝑧 ∈ R (𝑥 <R 𝑦 → (𝑥 <R 𝑧 ∨ 𝑧 <R 𝑦)) |
| 79 | | df-iso 4332 |
. 2
⊢ (
<R Or R ↔ (
<R Po R ∧ ∀𝑥 ∈ R
∀𝑦 ∈
R ∀𝑧
∈ R (𝑥
<R 𝑦 → (𝑥 <R 𝑧 ∨ 𝑧 <R 𝑦)))) |
| 80 | 1, 78, 79 | mpbir2an 944 |
1
⊢
<R Or R |