ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsosr GIF version

Theorem ltsosr 7596
Description: Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.)
Assertion
Ref Expression
ltsosr <R Or R

Proof of Theorem ltsosr
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑟 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltposr 7595 . 2 <R Po R
2 df-nr 7559 . . . 4 R = ((P × P) / ~R )
3 breq1 3940 . . . . 5 ([⟨𝑎, 𝑏⟩] ~R = 𝑥 → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R𝑥 <R [⟨𝑐, 𝑑⟩] ~R ))
4 breq1 3940 . . . . . 6 ([⟨𝑎, 𝑏⟩] ~R = 𝑥 → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R𝑥 <R [⟨𝑒, 𝑓⟩] ~R ))
54orbi1d 781 . . . . 5 ([⟨𝑎, 𝑏⟩] ~R = 𝑥 → (([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ) ↔ (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R )))
63, 5imbi12d 233 . . . 4 ([⟨𝑎, 𝑏⟩] ~R = 𝑥 → (([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R )) ↔ (𝑥 <R [⟨𝑐, 𝑑⟩] ~R → (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ))))
7 breq2 3941 . . . . 5 ([⟨𝑐, 𝑑⟩] ~R = 𝑦 → (𝑥 <R [⟨𝑐, 𝑑⟩] ~R𝑥 <R 𝑦))
8 breq2 3941 . . . . . 6 ([⟨𝑐, 𝑑⟩] ~R = 𝑦 → ([⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ [⟨𝑒, 𝑓⟩] ~R <R 𝑦))
98orbi2d 780 . . . . 5 ([⟨𝑐, 𝑑⟩] ~R = 𝑦 → ((𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ) ↔ (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R 𝑦)))
107, 9imbi12d 233 . . . 4 ([⟨𝑐, 𝑑⟩] ~R = 𝑦 → ((𝑥 <R [⟨𝑐, 𝑑⟩] ~R → (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R )) ↔ (𝑥 <R 𝑦 → (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R 𝑦))))
11 breq2 3941 . . . . . 6 ([⟨𝑒, 𝑓⟩] ~R = 𝑧 → (𝑥 <R [⟨𝑒, 𝑓⟩] ~R𝑥 <R 𝑧))
12 breq1 3940 . . . . . 6 ([⟨𝑒, 𝑓⟩] ~R = 𝑧 → ([⟨𝑒, 𝑓⟩] ~R <R 𝑦𝑧 <R 𝑦))
1311, 12orbi12d 783 . . . . 5 ([⟨𝑒, 𝑓⟩] ~R = 𝑧 → ((𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R 𝑦) ↔ (𝑥 <R 𝑧𝑧 <R 𝑦)))
1413imbi2d 229 . . . 4 ([⟨𝑒, 𝑓⟩] ~R = 𝑧 → ((𝑥 <R 𝑦 → (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R 𝑦)) ↔ (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦))))
15 simp1l 1006 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑎P)
16 simp3r 1011 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑓P)
17 addclpr 7369 . . . . . . . . 9 ((𝑎P𝑓P) → (𝑎 +P 𝑓) ∈ P)
1815, 16, 17syl2anc 409 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑎 +P 𝑓) ∈ P)
19 simp2r 1009 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑑P)
20 addclpr 7369 . . . . . . . 8 (((𝑎 +P 𝑓) ∈ P𝑑P) → ((𝑎 +P 𝑓) +P 𝑑) ∈ P)
2118, 19, 20syl2anc 409 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑓) +P 𝑑) ∈ P)
22 simp2l 1008 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑐P)
23 addclpr 7369 . . . . . . . . 9 ((𝑓P𝑐P) → (𝑓 +P 𝑐) ∈ P)
2416, 22, 23syl2anc 409 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑓 +P 𝑐) ∈ P)
25 simp1r 1007 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑏P)
26 addclpr 7369 . . . . . . . 8 (((𝑓 +P 𝑐) ∈ P𝑏P) → ((𝑓 +P 𝑐) +P 𝑏) ∈ P)
2724, 25, 26syl2anc 409 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑓 +P 𝑐) +P 𝑏) ∈ P)
28 simp3l 1010 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑒P)
29 addclpr 7369 . . . . . . . . 9 ((𝑏P𝑒P) → (𝑏 +P 𝑒) ∈ P)
3025, 28, 29syl2anc 409 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑏 +P 𝑒) ∈ P)
31 addclpr 7369 . . . . . . . 8 (((𝑏 +P 𝑒) ∈ P𝑑P) → ((𝑏 +P 𝑒) +P 𝑑) ∈ P)
3230, 19, 31syl2anc 409 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑏 +P 𝑒) +P 𝑑) ∈ P)
33 ltsopr 7428 . . . . . . . 8 <P Or P
34 sowlin 4250 . . . . . . . 8 ((<P Or P ∧ (((𝑎 +P 𝑓) +P 𝑑) ∈ P ∧ ((𝑓 +P 𝑐) +P 𝑏) ∈ P ∧ ((𝑏 +P 𝑒) +P 𝑑) ∈ P)) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑏 +P 𝑒) +P 𝑑) ∨ ((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏))))
3533, 34mpan 421 . . . . . . 7 ((((𝑎 +P 𝑓) +P 𝑑) ∈ P ∧ ((𝑓 +P 𝑐) +P 𝑏) ∈ P ∧ ((𝑏 +P 𝑒) +P 𝑑) ∈ P) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑏 +P 𝑒) +P 𝑑) ∨ ((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏))))
3621, 27, 32, 35syl3anc 1217 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑏 +P 𝑒) +P 𝑑) ∨ ((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏))))
37 addclpr 7369 . . . . . . . . 9 ((𝑎P𝑑P) → (𝑎 +P 𝑑) ∈ P)
3815, 19, 37syl2anc 409 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑎 +P 𝑑) ∈ P)
39 addclpr 7369 . . . . . . . . 9 ((𝑏P𝑐P) → (𝑏 +P 𝑐) ∈ P)
4025, 22, 39syl2anc 409 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑏 +P 𝑐) ∈ P)
41 ltaprg 7451 . . . . . . . 8 (((𝑎 +P 𝑑) ∈ P ∧ (𝑏 +P 𝑐) ∈ P𝑓P) → ((𝑎 +P 𝑑)<P (𝑏 +P 𝑐) ↔ (𝑓 +P (𝑎 +P 𝑑))<P (𝑓 +P (𝑏 +P 𝑐))))
4238, 40, 16, 41syl3anc 1217 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑑)<P (𝑏 +P 𝑐) ↔ (𝑓 +P (𝑎 +P 𝑑))<P (𝑓 +P (𝑏 +P 𝑐))))
43 addcomprg 7410 . . . . . . . . . . 11 ((𝑟P𝑠P) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
4443adantl 275 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) ∧ (𝑟P𝑠P)) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
45 addassprg 7411 . . . . . . . . . . 11 ((𝑟P𝑠P𝑡P) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
4645adantl 275 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) ∧ (𝑟P𝑠P𝑡P)) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
4716, 15, 19, 44, 46caov12d 5960 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑓 +P (𝑎 +P 𝑑)) = (𝑎 +P (𝑓 +P 𝑑)))
4846, 15, 16, 19caovassd 5938 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑓) +P 𝑑) = (𝑎 +P (𝑓 +P 𝑑)))
4947, 48eqtr4d 2176 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑓 +P (𝑎 +P 𝑑)) = ((𝑎 +P 𝑓) +P 𝑑))
5046, 16, 25, 22caovassd 5938 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑓 +P 𝑏) +P 𝑐) = (𝑓 +P (𝑏 +P 𝑐)))
5116, 25, 22, 44, 46caov32d 5959 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑓 +P 𝑏) +P 𝑐) = ((𝑓 +P 𝑐) +P 𝑏))
5250, 51eqtr3d 2175 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑓 +P (𝑏 +P 𝑐)) = ((𝑓 +P 𝑐) +P 𝑏))
5349, 52breq12d 3950 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑓 +P (𝑎 +P 𝑑))<P (𝑓 +P (𝑏 +P 𝑐)) ↔ ((𝑎 +P 𝑓) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏)))
5442, 53bitrd 187 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑑)<P (𝑏 +P 𝑐) ↔ ((𝑎 +P 𝑓) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏)))
55 ltaprg 7451 . . . . . . . . 9 ((𝑟P𝑠P𝑡P) → (𝑟<P 𝑠 ↔ (𝑡 +P 𝑟)<P (𝑡 +P 𝑠)))
5655adantl 275 . . . . . . . 8 ((((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) ∧ (𝑟P𝑠P𝑡P)) → (𝑟<P 𝑠 ↔ (𝑡 +P 𝑟)<P (𝑡 +P 𝑠)))
5756, 18, 30, 19, 44caovord2d 5948 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑓)<P (𝑏 +P 𝑒) ↔ ((𝑎 +P 𝑓) +P 𝑑)<P ((𝑏 +P 𝑒) +P 𝑑)))
58 addclpr 7369 . . . . . . . . . 10 ((𝑒P𝑑P) → (𝑒 +P 𝑑) ∈ P)
5928, 19, 58syl2anc 409 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑒 +P 𝑑) ∈ P)
6056, 59, 24, 25, 44caovord2d 5948 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑒 +P 𝑑)<P (𝑓 +P 𝑐) ↔ ((𝑒 +P 𝑑) +P 𝑏)<P ((𝑓 +P 𝑐) +P 𝑏)))
6146, 25, 28, 19caovassd 5938 . . . . . . . . . 10 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑏 +P 𝑒) +P 𝑑) = (𝑏 +P (𝑒 +P 𝑑)))
6244, 25, 59caovcomd 5935 . . . . . . . . . 10 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑏 +P (𝑒 +P 𝑑)) = ((𝑒 +P 𝑑) +P 𝑏))
6361, 62eqtrd 2173 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑏 +P 𝑒) +P 𝑑) = ((𝑒 +P 𝑑) +P 𝑏))
6463breq1d 3947 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏) ↔ ((𝑒 +P 𝑑) +P 𝑏)<P ((𝑓 +P 𝑐) +P 𝑏)))
6560, 64bitr4d 190 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑒 +P 𝑑)<P (𝑓 +P 𝑐) ↔ ((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏)))
6657, 65orbi12d 783 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (((𝑎 +P 𝑓)<P (𝑏 +P 𝑒) ∨ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐)) ↔ (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑏 +P 𝑒) +P 𝑑) ∨ ((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏))))
6736, 54, 663imtr4d 202 . . . . 5 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑑)<P (𝑏 +P 𝑐) → ((𝑎 +P 𝑓)<P (𝑏 +P 𝑒) ∨ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐))))
68 ltsrprg 7579 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P)) → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ (𝑎 +P 𝑑)<P (𝑏 +P 𝑐)))
69683adant3 1002 . . . . 5 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ (𝑎 +P 𝑑)<P (𝑏 +P 𝑐)))
70 ltsrprg 7579 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑒P𝑓P)) → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ↔ (𝑎 +P 𝑓)<P (𝑏 +P 𝑒)))
71703adant2 1001 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ↔ (𝑎 +P 𝑓)<P (𝑏 +P 𝑒)))
72 ltsrprg 7579 . . . . . . . 8 (((𝑒P𝑓P) ∧ (𝑐P𝑑P)) → ([⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐)))
7372ancoms 266 . . . . . . 7 (((𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ([⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐)))
74733adant1 1000 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ([⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐)))
7571, 74orbi12d 783 . . . . 5 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ) ↔ ((𝑎 +P 𝑓)<P (𝑏 +P 𝑒) ∨ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐))))
7667, 69, 753imtr4d 202 . . . 4 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R )))
772, 6, 10, 14, 763ecoptocl 6526 . . 3 ((𝑥R𝑦R𝑧R) → (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦)))
7877rgen3 2522 . 2 𝑥R𝑦R𝑧R (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦))
79 df-iso 4227 . 2 ( <R Or R ↔ ( <R Po R ∧ ∀𝑥R𝑦R𝑧R (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦))))
801, 78, 79mpbir2an 927 1 <R Or R
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 963   = wceq 1332  wcel 1481  wral 2417  cop 3535   class class class wbr 3937   Po wpo 4224   Or wor 4225  (class class class)co 5782  [cec 6435  Pcnp 7123   +P cpp 7125  <P cltp 7127   ~R cer 7128  Rcnr 7129   <R cltr 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302  df-enr 7558  df-nr 7559  df-ltr 7562
This theorem is referenced by:  1ne0sr  7598  addgt0sr  7607  caucvgsrlemcl  7621  caucvgsrlemfv  7623  suplocsrlemb  7638  suplocsrlempr  7639  suplocsrlem  7640  axpre-ltirr  7714  axpre-ltwlin  7715  axpre-lttrn  7716
  Copyright terms: Public domain W3C validator