ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsosr GIF version

Theorem ltsosr 7254
Description: Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.)
Assertion
Ref Expression
ltsosr <R Or R

Proof of Theorem ltsosr
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑟 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltposr 7253 . 2 <R Po R
2 df-nr 7217 . . . 4 R = ((P × P) / ~R )
3 breq1 3823 . . . . 5 ([⟨𝑎, 𝑏⟩] ~R = 𝑥 → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R𝑥 <R [⟨𝑐, 𝑑⟩] ~R ))
4 breq1 3823 . . . . . 6 ([⟨𝑎, 𝑏⟩] ~R = 𝑥 → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R𝑥 <R [⟨𝑒, 𝑓⟩] ~R ))
54orbi1d 738 . . . . 5 ([⟨𝑎, 𝑏⟩] ~R = 𝑥 → (([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ) ↔ (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R )))
63, 5imbi12d 232 . . . 4 ([⟨𝑎, 𝑏⟩] ~R = 𝑥 → (([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R )) ↔ (𝑥 <R [⟨𝑐, 𝑑⟩] ~R → (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ))))
7 breq2 3824 . . . . 5 ([⟨𝑐, 𝑑⟩] ~R = 𝑦 → (𝑥 <R [⟨𝑐, 𝑑⟩] ~R𝑥 <R 𝑦))
8 breq2 3824 . . . . . 6 ([⟨𝑐, 𝑑⟩] ~R = 𝑦 → ([⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ [⟨𝑒, 𝑓⟩] ~R <R 𝑦))
98orbi2d 737 . . . . 5 ([⟨𝑐, 𝑑⟩] ~R = 𝑦 → ((𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ) ↔ (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R 𝑦)))
107, 9imbi12d 232 . . . 4 ([⟨𝑐, 𝑑⟩] ~R = 𝑦 → ((𝑥 <R [⟨𝑐, 𝑑⟩] ~R → (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R )) ↔ (𝑥 <R 𝑦 → (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R 𝑦))))
11 breq2 3824 . . . . . 6 ([⟨𝑒, 𝑓⟩] ~R = 𝑧 → (𝑥 <R [⟨𝑒, 𝑓⟩] ~R𝑥 <R 𝑧))
12 breq1 3823 . . . . . 6 ([⟨𝑒, 𝑓⟩] ~R = 𝑧 → ([⟨𝑒, 𝑓⟩] ~R <R 𝑦𝑧 <R 𝑦))
1311, 12orbi12d 740 . . . . 5 ([⟨𝑒, 𝑓⟩] ~R = 𝑧 → ((𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R 𝑦) ↔ (𝑥 <R 𝑧𝑧 <R 𝑦)))
1413imbi2d 228 . . . 4 ([⟨𝑒, 𝑓⟩] ~R = 𝑧 → ((𝑥 <R 𝑦 → (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R 𝑦)) ↔ (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦))))
15 simp1l 965 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑎P)
16 simp3r 970 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑓P)
17 addclpr 7040 . . . . . . . . 9 ((𝑎P𝑓P) → (𝑎 +P 𝑓) ∈ P)
1815, 16, 17syl2anc 403 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑎 +P 𝑓) ∈ P)
19 simp2r 968 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑑P)
20 addclpr 7040 . . . . . . . 8 (((𝑎 +P 𝑓) ∈ P𝑑P) → ((𝑎 +P 𝑓) +P 𝑑) ∈ P)
2118, 19, 20syl2anc 403 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑓) +P 𝑑) ∈ P)
22 simp2l 967 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑐P)
23 addclpr 7040 . . . . . . . . 9 ((𝑓P𝑐P) → (𝑓 +P 𝑐) ∈ P)
2416, 22, 23syl2anc 403 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑓 +P 𝑐) ∈ P)
25 simp1r 966 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑏P)
26 addclpr 7040 . . . . . . . 8 (((𝑓 +P 𝑐) ∈ P𝑏P) → ((𝑓 +P 𝑐) +P 𝑏) ∈ P)
2724, 25, 26syl2anc 403 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑓 +P 𝑐) +P 𝑏) ∈ P)
28 simp3l 969 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑒P)
29 addclpr 7040 . . . . . . . . 9 ((𝑏P𝑒P) → (𝑏 +P 𝑒) ∈ P)
3025, 28, 29syl2anc 403 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑏 +P 𝑒) ∈ P)
31 addclpr 7040 . . . . . . . 8 (((𝑏 +P 𝑒) ∈ P𝑑P) → ((𝑏 +P 𝑒) +P 𝑑) ∈ P)
3230, 19, 31syl2anc 403 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑏 +P 𝑒) +P 𝑑) ∈ P)
33 ltsopr 7099 . . . . . . . 8 <P Or P
34 sowlin 4121 . . . . . . . 8 ((<P Or P ∧ (((𝑎 +P 𝑓) +P 𝑑) ∈ P ∧ ((𝑓 +P 𝑐) +P 𝑏) ∈ P ∧ ((𝑏 +P 𝑒) +P 𝑑) ∈ P)) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑏 +P 𝑒) +P 𝑑) ∨ ((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏))))
3533, 34mpan 415 . . . . . . 7 ((((𝑎 +P 𝑓) +P 𝑑) ∈ P ∧ ((𝑓 +P 𝑐) +P 𝑏) ∈ P ∧ ((𝑏 +P 𝑒) +P 𝑑) ∈ P) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑏 +P 𝑒) +P 𝑑) ∨ ((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏))))
3621, 27, 32, 35syl3anc 1172 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑏 +P 𝑒) +P 𝑑) ∨ ((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏))))
37 addclpr 7040 . . . . . . . . 9 ((𝑎P𝑑P) → (𝑎 +P 𝑑) ∈ P)
3815, 19, 37syl2anc 403 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑎 +P 𝑑) ∈ P)
39 addclpr 7040 . . . . . . . . 9 ((𝑏P𝑐P) → (𝑏 +P 𝑐) ∈ P)
4025, 22, 39syl2anc 403 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑏 +P 𝑐) ∈ P)
41 ltaprg 7122 . . . . . . . 8 (((𝑎 +P 𝑑) ∈ P ∧ (𝑏 +P 𝑐) ∈ P𝑓P) → ((𝑎 +P 𝑑)<P (𝑏 +P 𝑐) ↔ (𝑓 +P (𝑎 +P 𝑑))<P (𝑓 +P (𝑏 +P 𝑐))))
4238, 40, 16, 41syl3anc 1172 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑑)<P (𝑏 +P 𝑐) ↔ (𝑓 +P (𝑎 +P 𝑑))<P (𝑓 +P (𝑏 +P 𝑐))))
43 addcomprg 7081 . . . . . . . . . . 11 ((𝑟P𝑠P) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
4443adantl 271 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) ∧ (𝑟P𝑠P)) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
45 addassprg 7082 . . . . . . . . . . 11 ((𝑟P𝑠P𝑡P) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
4645adantl 271 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) ∧ (𝑟P𝑠P𝑡P)) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
4716, 15, 19, 44, 46caov12d 5783 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑓 +P (𝑎 +P 𝑑)) = (𝑎 +P (𝑓 +P 𝑑)))
4846, 15, 16, 19caovassd 5761 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑓) +P 𝑑) = (𝑎 +P (𝑓 +P 𝑑)))
4947, 48eqtr4d 2120 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑓 +P (𝑎 +P 𝑑)) = ((𝑎 +P 𝑓) +P 𝑑))
5046, 16, 25, 22caovassd 5761 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑓 +P 𝑏) +P 𝑐) = (𝑓 +P (𝑏 +P 𝑐)))
5116, 25, 22, 44, 46caov32d 5782 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑓 +P 𝑏) +P 𝑐) = ((𝑓 +P 𝑐) +P 𝑏))
5250, 51eqtr3d 2119 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑓 +P (𝑏 +P 𝑐)) = ((𝑓 +P 𝑐) +P 𝑏))
5349, 52breq12d 3833 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑓 +P (𝑎 +P 𝑑))<P (𝑓 +P (𝑏 +P 𝑐)) ↔ ((𝑎 +P 𝑓) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏)))
5442, 53bitrd 186 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑑)<P (𝑏 +P 𝑐) ↔ ((𝑎 +P 𝑓) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏)))
55 ltaprg 7122 . . . . . . . . 9 ((𝑟P𝑠P𝑡P) → (𝑟<P 𝑠 ↔ (𝑡 +P 𝑟)<P (𝑡 +P 𝑠)))
5655adantl 271 . . . . . . . 8 ((((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) ∧ (𝑟P𝑠P𝑡P)) → (𝑟<P 𝑠 ↔ (𝑡 +P 𝑟)<P (𝑡 +P 𝑠)))
5756, 18, 30, 19, 44caovord2d 5771 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑓)<P (𝑏 +P 𝑒) ↔ ((𝑎 +P 𝑓) +P 𝑑)<P ((𝑏 +P 𝑒) +P 𝑑)))
58 addclpr 7040 . . . . . . . . . 10 ((𝑒P𝑑P) → (𝑒 +P 𝑑) ∈ P)
5928, 19, 58syl2anc 403 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑒 +P 𝑑) ∈ P)
6056, 59, 24, 25, 44caovord2d 5771 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑒 +P 𝑑)<P (𝑓 +P 𝑐) ↔ ((𝑒 +P 𝑑) +P 𝑏)<P ((𝑓 +P 𝑐) +P 𝑏)))
6146, 25, 28, 19caovassd 5761 . . . . . . . . . 10 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑏 +P 𝑒) +P 𝑑) = (𝑏 +P (𝑒 +P 𝑑)))
6244, 25, 59caovcomd 5758 . . . . . . . . . 10 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑏 +P (𝑒 +P 𝑑)) = ((𝑒 +P 𝑑) +P 𝑏))
6361, 62eqtrd 2117 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑏 +P 𝑒) +P 𝑑) = ((𝑒 +P 𝑑) +P 𝑏))
6463breq1d 3830 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏) ↔ ((𝑒 +P 𝑑) +P 𝑏)<P ((𝑓 +P 𝑐) +P 𝑏)))
6560, 64bitr4d 189 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑒 +P 𝑑)<P (𝑓 +P 𝑐) ↔ ((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏)))
6657, 65orbi12d 740 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (((𝑎 +P 𝑓)<P (𝑏 +P 𝑒) ∨ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐)) ↔ (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑏 +P 𝑒) +P 𝑑) ∨ ((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏))))
6736, 54, 663imtr4d 201 . . . . 5 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑑)<P (𝑏 +P 𝑐) → ((𝑎 +P 𝑓)<P (𝑏 +P 𝑒) ∨ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐))))
68 ltsrprg 7237 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P)) → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ (𝑎 +P 𝑑)<P (𝑏 +P 𝑐)))
69683adant3 961 . . . . 5 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ (𝑎 +P 𝑑)<P (𝑏 +P 𝑐)))
70 ltsrprg 7237 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑒P𝑓P)) → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ↔ (𝑎 +P 𝑓)<P (𝑏 +P 𝑒)))
71703adant2 960 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ↔ (𝑎 +P 𝑓)<P (𝑏 +P 𝑒)))
72 ltsrprg 7237 . . . . . . . 8 (((𝑒P𝑓P) ∧ (𝑐P𝑑P)) → ([⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐)))
7372ancoms 264 . . . . . . 7 (((𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ([⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐)))
74733adant1 959 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ([⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐)))
7571, 74orbi12d 740 . . . . 5 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ) ↔ ((𝑎 +P 𝑓)<P (𝑏 +P 𝑒) ∨ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐))))
7667, 69, 753imtr4d 201 . . . 4 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R )))
772, 6, 10, 14, 763ecoptocl 6333 . . 3 ((𝑥R𝑦R𝑧R) → (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦)))
7877rgen3 2456 . 2 𝑥R𝑦R𝑧R (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦))
79 df-iso 4098 . 2 ( <R Or R ↔ ( <R Po R ∧ ∀𝑥R𝑦R𝑧R (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦))))
801, 78, 79mpbir2an 886 1 <R Or R
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 662  w3a 922   = wceq 1287  wcel 1436  wral 2355  cop 3434   class class class wbr 3820   Po wpo 4095   Or wor 4096  (class class class)co 5613  [cec 6242  Pcnp 6794   +P cpp 6796  <P cltp 6798   ~R cer 6799  Rcnr 6800   <R cltr 6806
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-eprel 4090  df-id 4094  df-po 4097  df-iso 4098  df-iord 4167  df-on 4169  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-irdg 6089  df-1o 6135  df-2o 6136  df-oadd 6139  df-omul 6140  df-er 6244  df-ec 6246  df-qs 6250  df-ni 6807  df-pli 6808  df-mi 6809  df-lti 6810  df-plpq 6847  df-mpq 6848  df-enq 6850  df-nqqs 6851  df-plqqs 6852  df-mqqs 6853  df-1nqqs 6854  df-rq 6855  df-ltnqqs 6856  df-enq0 6927  df-nq0 6928  df-0nq0 6929  df-plq0 6930  df-mq0 6931  df-inp 6969  df-iplp 6971  df-iltp 6973  df-enr 7216  df-nr 7217  df-ltr 7220
This theorem is referenced by:  1ne0sr  7256  addgt0sr  7265  caucvgsrlemcl  7278  caucvgsrlemfv  7280  axpre-ltirr  7361  axpre-ltwlin  7362  axpre-lttrn  7363
  Copyright terms: Public domain W3C validator