ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsosr GIF version

Theorem ltsosr 7726
Description: Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.)
Assertion
Ref Expression
ltsosr <R Or R

Proof of Theorem ltsosr
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑟 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltposr 7725 . 2 <R Po R
2 df-nr 7689 . . . 4 R = ((P × P) / ~R )
3 breq1 3992 . . . . 5 ([⟨𝑎, 𝑏⟩] ~R = 𝑥 → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R𝑥 <R [⟨𝑐, 𝑑⟩] ~R ))
4 breq1 3992 . . . . . 6 ([⟨𝑎, 𝑏⟩] ~R = 𝑥 → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R𝑥 <R [⟨𝑒, 𝑓⟩] ~R ))
54orbi1d 786 . . . . 5 ([⟨𝑎, 𝑏⟩] ~R = 𝑥 → (([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ) ↔ (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R )))
63, 5imbi12d 233 . . . 4 ([⟨𝑎, 𝑏⟩] ~R = 𝑥 → (([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R )) ↔ (𝑥 <R [⟨𝑐, 𝑑⟩] ~R → (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ))))
7 breq2 3993 . . . . 5 ([⟨𝑐, 𝑑⟩] ~R = 𝑦 → (𝑥 <R [⟨𝑐, 𝑑⟩] ~R𝑥 <R 𝑦))
8 breq2 3993 . . . . . 6 ([⟨𝑐, 𝑑⟩] ~R = 𝑦 → ([⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ [⟨𝑒, 𝑓⟩] ~R <R 𝑦))
98orbi2d 785 . . . . 5 ([⟨𝑐, 𝑑⟩] ~R = 𝑦 → ((𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ) ↔ (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R 𝑦)))
107, 9imbi12d 233 . . . 4 ([⟨𝑐, 𝑑⟩] ~R = 𝑦 → ((𝑥 <R [⟨𝑐, 𝑑⟩] ~R → (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R )) ↔ (𝑥 <R 𝑦 → (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R 𝑦))))
11 breq2 3993 . . . . . 6 ([⟨𝑒, 𝑓⟩] ~R = 𝑧 → (𝑥 <R [⟨𝑒, 𝑓⟩] ~R𝑥 <R 𝑧))
12 breq1 3992 . . . . . 6 ([⟨𝑒, 𝑓⟩] ~R = 𝑧 → ([⟨𝑒, 𝑓⟩] ~R <R 𝑦𝑧 <R 𝑦))
1311, 12orbi12d 788 . . . . 5 ([⟨𝑒, 𝑓⟩] ~R = 𝑧 → ((𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R 𝑦) ↔ (𝑥 <R 𝑧𝑧 <R 𝑦)))
1413imbi2d 229 . . . 4 ([⟨𝑒, 𝑓⟩] ~R = 𝑧 → ((𝑥 <R 𝑦 → (𝑥 <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R 𝑦)) ↔ (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦))))
15 simp1l 1016 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑎P)
16 simp3r 1021 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑓P)
17 addclpr 7499 . . . . . . . . 9 ((𝑎P𝑓P) → (𝑎 +P 𝑓) ∈ P)
1815, 16, 17syl2anc 409 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑎 +P 𝑓) ∈ P)
19 simp2r 1019 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑑P)
20 addclpr 7499 . . . . . . . 8 (((𝑎 +P 𝑓) ∈ P𝑑P) → ((𝑎 +P 𝑓) +P 𝑑) ∈ P)
2118, 19, 20syl2anc 409 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑓) +P 𝑑) ∈ P)
22 simp2l 1018 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑐P)
23 addclpr 7499 . . . . . . . . 9 ((𝑓P𝑐P) → (𝑓 +P 𝑐) ∈ P)
2416, 22, 23syl2anc 409 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑓 +P 𝑐) ∈ P)
25 simp1r 1017 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑏P)
26 addclpr 7499 . . . . . . . 8 (((𝑓 +P 𝑐) ∈ P𝑏P) → ((𝑓 +P 𝑐) +P 𝑏) ∈ P)
2724, 25, 26syl2anc 409 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑓 +P 𝑐) +P 𝑏) ∈ P)
28 simp3l 1020 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → 𝑒P)
29 addclpr 7499 . . . . . . . . 9 ((𝑏P𝑒P) → (𝑏 +P 𝑒) ∈ P)
3025, 28, 29syl2anc 409 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑏 +P 𝑒) ∈ P)
31 addclpr 7499 . . . . . . . 8 (((𝑏 +P 𝑒) ∈ P𝑑P) → ((𝑏 +P 𝑒) +P 𝑑) ∈ P)
3230, 19, 31syl2anc 409 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑏 +P 𝑒) +P 𝑑) ∈ P)
33 ltsopr 7558 . . . . . . . 8 <P Or P
34 sowlin 4305 . . . . . . . 8 ((<P Or P ∧ (((𝑎 +P 𝑓) +P 𝑑) ∈ P ∧ ((𝑓 +P 𝑐) +P 𝑏) ∈ P ∧ ((𝑏 +P 𝑒) +P 𝑑) ∈ P)) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑏 +P 𝑒) +P 𝑑) ∨ ((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏))))
3533, 34mpan 422 . . . . . . 7 ((((𝑎 +P 𝑓) +P 𝑑) ∈ P ∧ ((𝑓 +P 𝑐) +P 𝑏) ∈ P ∧ ((𝑏 +P 𝑒) +P 𝑑) ∈ P) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑏 +P 𝑒) +P 𝑑) ∨ ((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏))))
3621, 27, 32, 35syl3anc 1233 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏) → (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑏 +P 𝑒) +P 𝑑) ∨ ((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏))))
37 addclpr 7499 . . . . . . . . 9 ((𝑎P𝑑P) → (𝑎 +P 𝑑) ∈ P)
3815, 19, 37syl2anc 409 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑎 +P 𝑑) ∈ P)
39 addclpr 7499 . . . . . . . . 9 ((𝑏P𝑐P) → (𝑏 +P 𝑐) ∈ P)
4025, 22, 39syl2anc 409 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑏 +P 𝑐) ∈ P)
41 ltaprg 7581 . . . . . . . 8 (((𝑎 +P 𝑑) ∈ P ∧ (𝑏 +P 𝑐) ∈ P𝑓P) → ((𝑎 +P 𝑑)<P (𝑏 +P 𝑐) ↔ (𝑓 +P (𝑎 +P 𝑑))<P (𝑓 +P (𝑏 +P 𝑐))))
4238, 40, 16, 41syl3anc 1233 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑑)<P (𝑏 +P 𝑐) ↔ (𝑓 +P (𝑎 +P 𝑑))<P (𝑓 +P (𝑏 +P 𝑐))))
43 addcomprg 7540 . . . . . . . . . . 11 ((𝑟P𝑠P) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
4443adantl 275 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) ∧ (𝑟P𝑠P)) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
45 addassprg 7541 . . . . . . . . . . 11 ((𝑟P𝑠P𝑡P) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
4645adantl 275 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) ∧ (𝑟P𝑠P𝑡P)) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
4716, 15, 19, 44, 46caov12d 6034 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑓 +P (𝑎 +P 𝑑)) = (𝑎 +P (𝑓 +P 𝑑)))
4846, 15, 16, 19caovassd 6012 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑓) +P 𝑑) = (𝑎 +P (𝑓 +P 𝑑)))
4947, 48eqtr4d 2206 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑓 +P (𝑎 +P 𝑑)) = ((𝑎 +P 𝑓) +P 𝑑))
5046, 16, 25, 22caovassd 6012 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑓 +P 𝑏) +P 𝑐) = (𝑓 +P (𝑏 +P 𝑐)))
5116, 25, 22, 44, 46caov32d 6033 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑓 +P 𝑏) +P 𝑐) = ((𝑓 +P 𝑐) +P 𝑏))
5250, 51eqtr3d 2205 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑓 +P (𝑏 +P 𝑐)) = ((𝑓 +P 𝑐) +P 𝑏))
5349, 52breq12d 4002 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑓 +P (𝑎 +P 𝑑))<P (𝑓 +P (𝑏 +P 𝑐)) ↔ ((𝑎 +P 𝑓) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏)))
5442, 53bitrd 187 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑑)<P (𝑏 +P 𝑐) ↔ ((𝑎 +P 𝑓) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏)))
55 ltaprg 7581 . . . . . . . . 9 ((𝑟P𝑠P𝑡P) → (𝑟<P 𝑠 ↔ (𝑡 +P 𝑟)<P (𝑡 +P 𝑠)))
5655adantl 275 . . . . . . . 8 ((((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) ∧ (𝑟P𝑠P𝑡P)) → (𝑟<P 𝑠 ↔ (𝑡 +P 𝑟)<P (𝑡 +P 𝑠)))
5756, 18, 30, 19, 44caovord2d 6022 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑓)<P (𝑏 +P 𝑒) ↔ ((𝑎 +P 𝑓) +P 𝑑)<P ((𝑏 +P 𝑒) +P 𝑑)))
58 addclpr 7499 . . . . . . . . . 10 ((𝑒P𝑑P) → (𝑒 +P 𝑑) ∈ P)
5928, 19, 58syl2anc 409 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑒 +P 𝑑) ∈ P)
6056, 59, 24, 25, 44caovord2d 6022 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑒 +P 𝑑)<P (𝑓 +P 𝑐) ↔ ((𝑒 +P 𝑑) +P 𝑏)<P ((𝑓 +P 𝑐) +P 𝑏)))
6146, 25, 28, 19caovassd 6012 . . . . . . . . . 10 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑏 +P 𝑒) +P 𝑑) = (𝑏 +P (𝑒 +P 𝑑)))
6244, 25, 59caovcomd 6009 . . . . . . . . . 10 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (𝑏 +P (𝑒 +P 𝑑)) = ((𝑒 +P 𝑑) +P 𝑏))
6361, 62eqtrd 2203 . . . . . . . . 9 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑏 +P 𝑒) +P 𝑑) = ((𝑒 +P 𝑑) +P 𝑏))
6463breq1d 3999 . . . . . . . 8 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏) ↔ ((𝑒 +P 𝑑) +P 𝑏)<P ((𝑓 +P 𝑐) +P 𝑏)))
6560, 64bitr4d 190 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑒 +P 𝑑)<P (𝑓 +P 𝑐) ↔ ((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏)))
6657, 65orbi12d 788 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (((𝑎 +P 𝑓)<P (𝑏 +P 𝑒) ∨ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐)) ↔ (((𝑎 +P 𝑓) +P 𝑑)<P ((𝑏 +P 𝑒) +P 𝑑) ∨ ((𝑏 +P 𝑒) +P 𝑑)<P ((𝑓 +P 𝑐) +P 𝑏))))
6736, 54, 663imtr4d 202 . . . . 5 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ((𝑎 +P 𝑑)<P (𝑏 +P 𝑐) → ((𝑎 +P 𝑓)<P (𝑏 +P 𝑒) ∨ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐))))
68 ltsrprg 7709 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P)) → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ (𝑎 +P 𝑑)<P (𝑏 +P 𝑐)))
69683adant3 1012 . . . . 5 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ (𝑎 +P 𝑑)<P (𝑏 +P 𝑐)))
70 ltsrprg 7709 . . . . . . 7 (((𝑎P𝑏P) ∧ (𝑒P𝑓P)) → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ↔ (𝑎 +P 𝑓)<P (𝑏 +P 𝑒)))
71703adant2 1011 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ↔ (𝑎 +P 𝑓)<P (𝑏 +P 𝑒)))
72 ltsrprg 7709 . . . . . . . 8 (((𝑒P𝑓P) ∧ (𝑐P𝑑P)) → ([⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐)))
7372ancoms 266 . . . . . . 7 (((𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ([⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐)))
74733adant1 1010 . . . . . 6 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ([⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ↔ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐)))
7571, 74orbi12d 788 . . . . 5 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → (([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R ) ↔ ((𝑎 +P 𝑓)<P (𝑏 +P 𝑒) ∨ (𝑒 +P 𝑑)<P (𝑓 +P 𝑐))))
7667, 69, 753imtr4d 202 . . . 4 (((𝑎P𝑏P) ∧ (𝑐P𝑑P) ∧ (𝑒P𝑓P)) → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R → ([⟨𝑎, 𝑏⟩] ~R <R [⟨𝑒, 𝑓⟩] ~R ∨ [⟨𝑒, 𝑓⟩] ~R <R [⟨𝑐, 𝑑⟩] ~R )))
772, 6, 10, 14, 763ecoptocl 6602 . . 3 ((𝑥R𝑦R𝑧R) → (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦)))
7877rgen3 2557 . 2 𝑥R𝑦R𝑧R (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦))
79 df-iso 4282 . 2 ( <R Or R ↔ ( <R Po R ∧ ∀𝑥R𝑦R𝑧R (𝑥 <R 𝑦 → (𝑥 <R 𝑧𝑧 <R 𝑦))))
801, 78, 79mpbir2an 937 1 <R Or R
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  wral 2448  cop 3586   class class class wbr 3989   Po wpo 4279   Or wor 4280  (class class class)co 5853  [cec 6511  Pcnp 7253   +P cpp 7255  <P cltp 7257   ~R cer 7258  Rcnr 7259   <R cltr 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-iltp 7432  df-enr 7688  df-nr 7689  df-ltr 7692
This theorem is referenced by:  1ne0sr  7728  addgt0sr  7737  caucvgsrlemcl  7751  caucvgsrlemfv  7753  suplocsrlemb  7768  suplocsrlempr  7769  suplocsrlem  7770  axpre-ltirr  7844  axpre-ltwlin  7845  axpre-lttrn  7846
  Copyright terms: Public domain W3C validator