ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen3 Unicode version

Theorem rgen3 2544
Description: Generalization rule for restricted quantification. (Contributed by NM, 12-Jan-2008.)
Hypothesis
Ref Expression
rgen3.1  |-  ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )
Assertion
Ref Expression
rgen3  |-  A. x  e.  A  A. y  e.  B  A. z  e.  C  ph
Distinct variable groups:    y, z, A   
z, B    x, y,
z
Allowed substitution hints:    ph( x, y, z)    A( x)    B( x, y)    C( x, y, z)

Proof of Theorem rgen3
StepHypRef Expression
1 rgen3.1 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )
213expa 1185 . . 3  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  e.  C )  ->  ph )
32ralrimiva 2530 . 2  |-  ( ( x  e.  A  /\  y  e.  B )  ->  A. z  e.  C  ph )
43rgen2 2543 1  |-  A. x  e.  A  A. y  e.  B  A. z  e.  C  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    e. wcel 2128   A.wral 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-4 1490  ax-17 1506
This theorem depends on definitions:  df-bi 116  df-3an 965  df-nf 1441  df-ral 2440
This theorem is referenced by:  reg3exmidlemwe  4537  ltsopr  7510  ltsosr  7678  ltso  7949  xrltso  9696  addcncntoplem  12922
  Copyright terms: Public domain W3C validator