ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen3 Unicode version

Theorem rgen3 2584
Description: Generalization rule for restricted quantification. (Contributed by NM, 12-Jan-2008.)
Hypothesis
Ref Expression
rgen3.1  |-  ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )
Assertion
Ref Expression
rgen3  |-  A. x  e.  A  A. y  e.  B  A. z  e.  C  ph
Distinct variable groups:    y, z, A   
z, B    x, y,
z
Allowed substitution hints:    ph( x, y, z)    A( x)    B( x, y)    C( x, y, z)

Proof of Theorem rgen3
StepHypRef Expression
1 rgen3.1 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )
213expa 1205 . . 3  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  e.  C )  ->  ph )
32ralrimiva 2570 . 2  |-  ( ( x  e.  A  /\  y  e.  B )  ->  A. z  e.  C  ph )
43rgen2 2583 1  |-  A. x  e.  A  A. y  e.  B  A. z  e.  C  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2167   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540
This theorem depends on definitions:  df-bi 117  df-3an 982  df-nf 1475  df-ral 2480
This theorem is referenced by:  reg3exmidlemwe  4615  ltsopr  7661  ltsosr  7829  ltso  8102  aptap  8674  xrltso  9868  addcncntoplem  14773
  Copyright terms: Public domain W3C validator