ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcedvd GIF version

Theorem rspcedvd 2893
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2891. (Contributed by AV, 27-Nov-2019.)
Hypotheses
Ref Expression
rspcedvd.1 (𝜑𝐴𝐵)
rspcedvd.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
rspcedvd.3 (𝜑𝜒)
Assertion
Ref Expression
rspcedvd (𝜑 → ∃𝑥𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcedvd
StepHypRef Expression
1 rspcedvd.3 . 2 (𝜑𝜒)
2 rspcedvd.1 . . 3 (𝜑𝐴𝐵)
3 rspcedvd.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
42, 3rspcedv 2891 . 2 (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
51, 4mpd 13 1 (𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wrex 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-v 2781
This theorem is referenced by:  rspcime  2894  rspcedeq1vd  2896  rspcedeq2vd  2897  updjud  7217  elpq  9812  modqmuladd  10555  modqmuladdnn0  10557  modfzo0difsn  10584  wrdl1exs1  11128  negfi  11705  divconjdvds  12326  2tp1odd  12361  dfgcd2  12501  qredeu  12585  pw2dvdslemn  12653  dvdsprmpweq  12824  oddprmdvds  12843  gsumfzval  13390  gsumval2  13396  isnsgrp  13405  dfgrp2  13526  grplrinv  13556  grpidinv  13558  dfgrp3m  13598  ringid  13955  xmettx  15149  gausslemma2dlem1a  15702  2lgslem1b  15733  usgredg4  15978  bj-charfunbi  16084
  Copyright terms: Public domain W3C validator