![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspcedvd | GIF version |
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2868. (Contributed by AV, 27-Nov-2019.) |
Ref | Expression |
---|---|
rspcedvd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcedvd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
rspcedvd.3 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
rspcedvd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcedvd.3 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | rspcedvd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | rspcedvd.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | rspcedv 2868 | . 2 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 |
This theorem is referenced by: rspcime 2871 rspcedeq1vd 2873 rspcedeq2vd 2874 updjud 7141 elpq 9714 modqmuladd 10437 modqmuladdnn0 10439 modfzo0difsn 10466 negfi 11371 divconjdvds 11991 2tp1odd 12025 dfgcd2 12151 qredeu 12235 pw2dvdslemn 12303 dvdsprmpweq 12473 oddprmdvds 12492 gsumfzval 12974 gsumval2 12980 isnsgrp 12989 dfgrp2 13099 grplrinv 13129 grpidinv 13131 dfgrp3m 13171 ringid 13522 xmettx 14678 gausslemma2dlem1a 15174 bj-charfunbi 15303 |
Copyright terms: Public domain | W3C validator |