| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcedvd | GIF version | ||
| Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2872. (Contributed by AV, 27-Nov-2019.) |
| Ref | Expression |
|---|---|
| rspcedvd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcedvd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| rspcedvd.3 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| rspcedvd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcedvd.3 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | rspcedvd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | rspcedvd.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | rspcedv 2872 | . 2 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| 5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 |
| This theorem is referenced by: rspcime 2875 rspcedeq1vd 2877 rspcedeq2vd 2878 updjud 7157 elpq 9742 modqmuladd 10477 modqmuladdnn0 10479 modfzo0difsn 10506 negfi 11412 divconjdvds 12033 2tp1odd 12068 dfgcd2 12208 qredeu 12292 pw2dvdslemn 12360 dvdsprmpweq 12531 oddprmdvds 12550 gsumfzval 13095 gsumval2 13101 isnsgrp 13110 dfgrp2 13231 grplrinv 13261 grpidinv 13263 dfgrp3m 13303 ringid 13660 xmettx 14854 gausslemma2dlem1a 15407 2lgslem1b 15438 bj-charfunbi 15565 |
| Copyright terms: Public domain | W3C validator |