| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcedvd | GIF version | ||
| Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2911. (Contributed by AV, 27-Nov-2019.) |
| Ref | Expression |
|---|---|
| rspcedvd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcedvd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| rspcedvd.3 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| rspcedvd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcedvd.3 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | rspcedvd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | rspcedvd.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | rspcedv 2911 | . 2 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| 5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 |
| This theorem is referenced by: rspcime 2914 rspcedeq1vd 2916 rspcedeq2vd 2917 updjud 7257 elpq 9852 modqmuladd 10596 modqmuladdnn0 10598 modfzo0difsn 10625 wrdl1exs1 11170 negfi 11747 divconjdvds 12368 2tp1odd 12403 dfgcd2 12543 qredeu 12627 pw2dvdslemn 12695 dvdsprmpweq 12866 oddprmdvds 12885 gsumfzval 13432 gsumval2 13438 isnsgrp 13447 dfgrp2 13568 grplrinv 13598 grpidinv 13600 dfgrp3m 13640 ringid 13997 xmettx 15192 gausslemma2dlem1a 15745 2lgslem1b 15776 usgredg4 16021 wlkvtxiedg 16066 wlkvtxiedgg 16067 bj-charfunbi 16198 |
| Copyright terms: Public domain | W3C validator |