ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcedvd GIF version

Theorem rspcedvd 2874
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2872. (Contributed by AV, 27-Nov-2019.)
Hypotheses
Ref Expression
rspcedvd.1 (𝜑𝐴𝐵)
rspcedvd.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
rspcedvd.3 (𝜑𝜒)
Assertion
Ref Expression
rspcedvd (𝜑 → ∃𝑥𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcedvd
StepHypRef Expression
1 rspcedvd.3 . 2 (𝜑𝜒)
2 rspcedvd.1 . . 3 (𝜑𝐴𝐵)
3 rspcedvd.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
42, 3rspcedv 2872 . 2 (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
51, 4mpd 13 1 (𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765
This theorem is referenced by:  rspcime  2875  rspcedeq1vd  2877  rspcedeq2vd  2878  updjud  7157  elpq  9740  modqmuladd  10475  modqmuladdnn0  10477  modfzo0difsn  10504  negfi  11410  divconjdvds  12031  2tp1odd  12066  dfgcd2  12206  qredeu  12290  pw2dvdslemn  12358  dvdsprmpweq  12529  oddprmdvds  12548  gsumfzval  13093  gsumval2  13099  isnsgrp  13108  dfgrp2  13229  grplrinv  13259  grpidinv  13261  dfgrp3m  13301  ringid  13658  xmettx  14830  gausslemma2dlem1a  15383  2lgslem1b  15414  bj-charfunbi  15541
  Copyright terms: Public domain W3C validator