Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspcedvd | GIF version |
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2834. (Contributed by AV, 27-Nov-2019.) |
Ref | Expression |
---|---|
rspcedvd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcedvd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
rspcedvd.3 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
rspcedvd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcedvd.3 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | rspcedvd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | rspcedvd.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | rspcedv 2834 | . 2 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 |
This theorem is referenced by: rspcime 2837 rspcedeq1vd 2839 rspcedeq2vd 2840 updjud 7047 elpq 9586 modqmuladd 10301 modqmuladdnn0 10303 modfzo0difsn 10330 negfi 11169 divconjdvds 11787 2tp1odd 11821 dfgcd2 11947 qredeu 12029 pw2dvdslemn 12097 dvdsprmpweq 12266 oddprmdvds 12284 xmettx 13150 bj-charfunbi 13693 |
Copyright terms: Public domain | W3C validator |