ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcedvd GIF version

Theorem rspcedvd 2836
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2834. (Contributed by AV, 27-Nov-2019.)
Hypotheses
Ref Expression
rspcedvd.1 (𝜑𝐴𝐵)
rspcedvd.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
rspcedvd.3 (𝜑𝜒)
Assertion
Ref Expression
rspcedvd (𝜑 → ∃𝑥𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcedvd
StepHypRef Expression
1 rspcedvd.3 . 2 (𝜑𝜒)
2 rspcedvd.1 . . 3 (𝜑𝐴𝐵)
3 rspcedvd.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
42, 3rspcedv 2834 . 2 (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
51, 4mpd 13 1 (𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728
This theorem is referenced by:  rspcime  2837  rspcedeq1vd  2839  rspcedeq2vd  2840  updjud  7047  elpq  9586  modqmuladd  10301  modqmuladdnn0  10303  modfzo0difsn  10330  negfi  11169  divconjdvds  11787  2tp1odd  11821  dfgcd2  11947  qredeu  12029  pw2dvdslemn  12097  dvdsprmpweq  12266  oddprmdvds  12284  xmettx  13150  bj-charfunbi  13693
  Copyright terms: Public domain W3C validator