| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcedvd | GIF version | ||
| Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2891. (Contributed by AV, 27-Nov-2019.) |
| Ref | Expression |
|---|---|
| rspcedvd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcedvd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| rspcedvd.3 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| rspcedvd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcedvd.3 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | rspcedvd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | rspcedvd.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | rspcedv 2891 | . 2 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| 5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∈ wcel 2180 ∃wrex 2489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-v 2781 |
| This theorem is referenced by: rspcime 2894 rspcedeq1vd 2896 rspcedeq2vd 2897 updjud 7217 elpq 9812 modqmuladd 10555 modqmuladdnn0 10557 modfzo0difsn 10584 wrdl1exs1 11128 negfi 11705 divconjdvds 12326 2tp1odd 12361 dfgcd2 12501 qredeu 12585 pw2dvdslemn 12653 dvdsprmpweq 12824 oddprmdvds 12843 gsumfzval 13390 gsumval2 13396 isnsgrp 13405 dfgrp2 13526 grplrinv 13556 grpidinv 13558 dfgrp3m 13598 ringid 13955 xmettx 15149 gausslemma2dlem1a 15702 2lgslem1b 15733 usgredg4 15978 bj-charfunbi 16084 |
| Copyright terms: Public domain | W3C validator |