| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcedvd | GIF version | ||
| Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv 2872. (Contributed by AV, 27-Nov-2019.) |
| Ref | Expression |
|---|---|
| rspcedvd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcedvd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| rspcedvd.3 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| rspcedvd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcedvd.3 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | rspcedvd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | rspcedvd.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | rspcedv 2872 | . 2 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| 5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 |
| This theorem is referenced by: rspcime 2875 rspcedeq1vd 2877 rspcedeq2vd 2878 updjud 7157 elpq 9740 modqmuladd 10475 modqmuladdnn0 10477 modfzo0difsn 10504 negfi 11410 divconjdvds 12031 2tp1odd 12066 dfgcd2 12206 qredeu 12290 pw2dvdslemn 12358 dvdsprmpweq 12529 oddprmdvds 12548 gsumfzval 13093 gsumval2 13099 isnsgrp 13108 dfgrp2 13229 grplrinv 13259 grpidinv 13261 dfgrp3m 13301 ringid 13658 xmettx 14830 gausslemma2dlem1a 15383 2lgslem1b 15414 bj-charfunbi 15541 |
| Copyright terms: Public domain | W3C validator |