![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspc2 | GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 9-Nov-2012.) |
Ref | Expression |
---|---|
rspc2.1 | ⊢ Ⅎ𝑥𝜒 |
rspc2.2 | ⊢ Ⅎ𝑦𝜓 |
rspc2.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2.4 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
2 | rspc2.1 | . . . 4 ⊢ Ⅎ𝑥𝜒 | |
3 | 1, 2 | nfralxy 2532 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐷 𝜒 |
4 | rspc2.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
5 | 4 | ralbidv 2494 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 𝜒)) |
6 | 3, 5 | rspc 2858 | . 2 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 𝜒)) |
7 | rspc2.2 | . . 3 ⊢ Ⅎ𝑦𝜓 | |
8 | rspc2.4 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
9 | 7, 8 | rspc 2858 | . 2 ⊢ (𝐵 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 𝜒 → 𝜓)) |
10 | 6, 9 | sylan9 409 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 Ⅎwnf 1471 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 |
This theorem is referenced by: rspc2v 2877 disjiun 4024 |
Copyright terms: Public domain | W3C validator |