ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc2 GIF version

Theorem rspc2 2800
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 9-Nov-2012.)
Hypotheses
Ref Expression
rspc2.1 𝑥𝜒
rspc2.2 𝑦𝜓
rspc2.3 (𝑥 = 𝐴 → (𝜑𝜒))
rspc2.4 (𝑦 = 𝐵 → (𝜒𝜓))
Assertion
Ref Expression
rspc2 ((𝐴𝐶𝐵𝐷) → (∀𝑥𝐶𝑦𝐷 𝜑𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem rspc2
StepHypRef Expression
1 nfcv 2281 . . . 4 𝑥𝐷
2 rspc2.1 . . . 4 𝑥𝜒
31, 2nfralxy 2471 . . 3 𝑥𝑦𝐷 𝜒
4 rspc2.3 . . . 4 (𝑥 = 𝐴 → (𝜑𝜒))
54ralbidv 2437 . . 3 (𝑥 = 𝐴 → (∀𝑦𝐷 𝜑 ↔ ∀𝑦𝐷 𝜒))
63, 5rspc 2783 . 2 (𝐴𝐶 → (∀𝑥𝐶𝑦𝐷 𝜑 → ∀𝑦𝐷 𝜒))
7 rspc2.2 . . 3 𝑦𝜓
8 rspc2.4 . . 3 (𝑦 = 𝐵 → (𝜒𝜓))
97, 8rspc 2783 . 2 (𝐵𝐷 → (∀𝑦𝐷 𝜒𝜓))
106, 9sylan9 406 1 ((𝐴𝐶𝐵𝐷) → (∀𝑥𝐶𝑦𝐷 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wnf 1436  wcel 1480  wral 2416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688
This theorem is referenced by:  rspc2v  2802  disjiun  3924
  Copyright terms: Public domain W3C validator