Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc2 | GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 9-Nov-2012.) |
Ref | Expression |
---|---|
rspc2.1 | ⊢ Ⅎ𝑥𝜒 |
rspc2.2 | ⊢ Ⅎ𝑦𝜓 |
rspc2.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2.4 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
2 | rspc2.1 | . . . 4 ⊢ Ⅎ𝑥𝜒 | |
3 | 1, 2 | nfralxy 2508 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐷 𝜒 |
4 | rspc2.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
5 | 4 | ralbidv 2470 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 𝜒)) |
6 | 3, 5 | rspc 2828 | . 2 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 𝜒)) |
7 | rspc2.2 | . . 3 ⊢ Ⅎ𝑦𝜓 | |
8 | rspc2.4 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
9 | 7, 8 | rspc 2828 | . 2 ⊢ (𝐵 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 𝜒 → 𝜓)) |
10 | 6, 9 | sylan9 407 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 Ⅎwnf 1453 ∈ wcel 2141 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 |
This theorem is referenced by: rspc2v 2847 disjiun 3984 |
Copyright terms: Public domain | W3C validator |