| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbc2ie | GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| sbc2ie.1 | ⊢ 𝐴 ∈ V |
| sbc2ie.2 | ⊢ 𝐵 ∈ V |
| sbc2ie.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbc2ie | ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc2ie.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sbc2ie.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | nfv 1574 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | nfv 1574 | . . 3 ⊢ Ⅎ𝑦𝜓 | |
| 5 | 2 | nfth 1510 | . . 3 ⊢ Ⅎ𝑥 𝐵 ∈ V |
| 6 | sbc2ie.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 7 | 3, 4, 5, 6 | sbc2iegf 3099 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
| 8 | 1, 2, 7 | mp2an 426 | 1 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 [wsbc 3028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 |
| This theorem is referenced by: sbc3ie 3102 wrd2ind 11250 |
| Copyright terms: Public domain | W3C validator |