Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbc2ie | GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
sbc2ie.1 | ⊢ 𝐴 ∈ V |
sbc2ie.2 | ⊢ 𝐵 ∈ V |
sbc2ie.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbc2ie | ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc2ie.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbc2ie.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | nfv 1521 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | nfv 1521 | . . 3 ⊢ Ⅎ𝑦𝜓 | |
5 | 2 | nfth 1457 | . . 3 ⊢ Ⅎ𝑥 𝐵 ∈ V |
6 | sbc2ie.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
7 | 3, 4, 5, 6 | sbc2iegf 3025 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
8 | 1, 2, 7 | mp2an 424 | 1 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 Vcvv 2730 [wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sbc 2956 |
This theorem is referenced by: sbc3ie 3028 |
Copyright terms: Public domain | W3C validator |