Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbc2iegf | GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
sbc2iegf.1 | ⊢ Ⅎ𝑥𝜓 |
sbc2iegf.2 | ⊢ Ⅎ𝑦𝜓 |
sbc2iegf.3 | ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 |
sbc2iegf.4 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbc2iegf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
2 | simpl 108 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑊) | |
3 | sbc2iegf.4 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
4 | 3 | adantll 473 | . . . 4 ⊢ (((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
5 | nfv 1521 | . . . 4 ⊢ Ⅎ𝑦(𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) | |
6 | sbc2iegf.2 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
7 | 6 | a1i 9 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) → Ⅎ𝑦𝜓) |
8 | 2, 4, 5, 7 | sbciedf 2990 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
9 | 8 | adantll 473 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
10 | nfv 1521 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑉 | |
11 | sbc2iegf.3 | . . 3 ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 | |
12 | 10, 11 | nfan 1558 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) |
13 | sbc2iegf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
14 | 13 | a1i 9 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Ⅎ𝑥𝜓) |
15 | 1, 9, 12, 14 | sbciedf 2990 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 Ⅎwnf 1453 ∈ wcel 2141 [wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sbc 2956 |
This theorem is referenced by: sbc2ie 3026 opelopabaf 4258 |
Copyright terms: Public domain | W3C validator |