| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbc2iegf | GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| sbc2iegf.1 | ⊢ Ⅎ𝑥𝜓 |
| sbc2iegf.2 | ⊢ Ⅎ𝑦𝜓 |
| sbc2iegf.3 | ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 |
| sbc2iegf.4 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbc2iegf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 2 | simpl 109 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑊) | |
| 3 | sbc2iegf.4 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | adantll 476 | . . . 4 ⊢ (((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| 5 | nfv 1554 | . . . 4 ⊢ Ⅎ𝑦(𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) | |
| 6 | sbc2iegf.2 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
| 7 | 6 | a1i 9 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) → Ⅎ𝑦𝜓) |
| 8 | 2, 4, 5, 7 | sbciedf 3044 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
| 9 | 8 | adantll 476 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
| 10 | nfv 1554 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑉 | |
| 11 | sbc2iegf.3 | . . 3 ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 | |
| 12 | 10, 11 | nfan 1591 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) |
| 13 | sbc2iegf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 14 | 13 | a1i 9 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Ⅎ𝑥𝜓) |
| 15 | 1, 9, 12, 14 | sbciedf 3044 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 Ⅎwnf 1486 ∈ wcel 2180 [wsbc 3008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-sbc 3009 |
| This theorem is referenced by: sbc2ie 3080 opelopabaf 4341 wrd2ind 11221 |
| Copyright terms: Public domain | W3C validator |