Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc2iegf GIF version

Theorem sbc2iegf 2982
 Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
sbc2iegf.1 𝑥𝜓
sbc2iegf.2 𝑦𝜓
sbc2iegf.3 𝑥 𝐵𝑊
sbc2iegf.4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
sbc2iegf ((𝐴𝑉𝐵𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝑉   𝑦,𝑊
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐵(𝑥)   𝑉(𝑦)   𝑊(𝑥)

Proof of Theorem sbc2iegf
StepHypRef Expression
1 simpl 108 . 2 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
2 simpl 108 . . . 4 ((𝐵𝑊𝑥 = 𝐴) → 𝐵𝑊)
3 sbc2iegf.4 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
43adantll 468 . . . 4 (((𝐵𝑊𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝜑𝜓))
5 nfv 1509 . . . 4 𝑦(𝐵𝑊𝑥 = 𝐴)
6 sbc2iegf.2 . . . . 5 𝑦𝜓
76a1i 9 . . . 4 ((𝐵𝑊𝑥 = 𝐴) → Ⅎ𝑦𝜓)
82, 4, 5, 7sbciedf 2947 . . 3 ((𝐵𝑊𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜑𝜓))
98adantll 468 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜑𝜓))
10 nfv 1509 . . 3 𝑥 𝐴𝑉
11 sbc2iegf.3 . . 3 𝑥 𝐵𝑊
1210, 11nfan 1545 . 2 𝑥(𝐴𝑉𝐵𝑊)
13 sbc2iegf.1 . . 3 𝑥𝜓
1413a1i 9 . 2 ((𝐴𝑉𝐵𝑊) → Ⅎ𝑥𝜓)
151, 9, 12, 14sbciedf 2947 1 ((𝐴𝑉𝐵𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332  Ⅎwnf 1437   ∈ wcel 1481  [wsbc 2912 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-sbc 2913 This theorem is referenced by:  sbc2ie  2983  opelopabaf  4202
 Copyright terms: Public domain W3C validator