Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbc2iegf | GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
sbc2iegf.1 | ⊢ Ⅎ𝑥𝜓 |
sbc2iegf.2 | ⊢ Ⅎ𝑦𝜓 |
sbc2iegf.3 | ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 |
sbc2iegf.4 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbc2iegf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
2 | simpl 108 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑊) | |
3 | sbc2iegf.4 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
4 | 3 | adantll 468 | . . . 4 ⊢ (((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
5 | nfv 1516 | . . . 4 ⊢ Ⅎ𝑦(𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) | |
6 | sbc2iegf.2 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
7 | 6 | a1i 9 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) → Ⅎ𝑦𝜓) |
8 | 2, 4, 5, 7 | sbciedf 2986 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
9 | 8 | adantll 468 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
10 | nfv 1516 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑉 | |
11 | sbc2iegf.3 | . . 3 ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 | |
12 | 10, 11 | nfan 1553 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) |
13 | sbc2iegf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
14 | 13 | a1i 9 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Ⅎ𝑥𝜓) |
15 | 1, 9, 12, 14 | sbciedf 2986 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 Ⅎwnf 1448 ∈ wcel 2136 [wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 |
This theorem is referenced by: sbc2ie 3022 opelopabaf 4251 |
Copyright terms: Public domain | W3C validator |