Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcbidv | GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
Ref | Expression |
---|---|
sbcbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcbidv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1515 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | sbcbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | sbcbid 3004 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 [wsbc 2947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-11 1493 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-sbc 2948 |
This theorem is referenced by: sbcbii 3006 csbcomg 3064 opelopabsb 4233 opelopabf 4247 sbcfng 5330 sbcfg 5331 f1od2 6195 |
Copyright terms: Public domain | W3C validator |