Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcex | GIF version |
Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 2956 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
2 | elex 2741 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 {cab 2156 Vcvv 2730 [wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 df-sbc 2956 |
This theorem is referenced by: sbcco 2976 sbc5 2978 sbcan 2997 sbcor 2999 sbcn1 3002 sbcim1 3003 sbcbi1 3004 sbcal 3006 sbcex2 3008 sbcel1v 3017 sbcel21v 3019 sbcimdv 3020 sbcrext 3032 spesbc 3040 csbprc 3460 opelopabsb 4245 |
Copyright terms: Public domain | W3C validator |