| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcex | GIF version | ||
| Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 2990 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 2 | elex 2774 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 {cab 2182 Vcvv 2763 [wsbc 2989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 df-sbc 2990 |
| This theorem is referenced by: sbcco 3011 sbc5 3013 sbcan 3032 sbcor 3034 sbcn1 3037 sbcim1 3038 sbcbi1 3039 sbcal 3041 sbcex2 3043 sbcel1v 3052 sbcel21v 3054 sbcimdv 3055 sbcrext 3067 spesbc 3075 csbprc 3496 opelopabsb 4294 |
| Copyright terms: Public domain | W3C validator |