ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcex GIF version

Theorem sbcex 3011
Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbcex ([𝐴 / 𝑥]𝜑𝐴 ∈ V)

Proof of Theorem sbcex
StepHypRef Expression
1 df-sbc 3003 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
2 elex 2785 . 2 (𝐴 ∈ {𝑥𝜑} → 𝐴 ∈ V)
31, 2sylbi 121 1 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  {cab 2192  Vcvv 2773  [wsbc 3002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-v 2775  df-sbc 3003
This theorem is referenced by:  sbcco  3024  sbc5  3026  sbcan  3045  sbcor  3047  sbcn1  3050  sbcim1  3051  sbcbi1  3052  sbcal  3054  sbcex2  3056  sbcel1v  3065  sbcel21v  3067  sbcimdv  3068  sbcrext  3080  spesbc  3088  csbprc  3510  opelopabsb  4314
  Copyright terms: Public domain W3C validator