| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcex | GIF version | ||
| Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3003 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 2 | elex 2785 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 {cab 2192 Vcvv 2773 [wsbc 3002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 df-sbc 3003 |
| This theorem is referenced by: sbcco 3024 sbc5 3026 sbcan 3045 sbcor 3047 sbcn1 3050 sbcim1 3051 sbcbi1 3052 sbcal 3054 sbcex2 3056 sbcel1v 3065 sbcel21v 3067 sbcimdv 3068 sbcrext 3080 spesbc 3088 csbprc 3510 opelopabsb 4314 |
| Copyright terms: Public domain | W3C validator |