| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbcng | GIF version | ||
| Description: Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.) | 
| Ref | Expression | 
|---|---|
| sbcng | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsbcq2 2992 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ [𝐴 / 𝑥] ¬ 𝜑)) | |
| 2 | dfsbcq2 2992 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | notbid 668 | . 2 ⊢ (𝑦 = 𝐴 → (¬ [𝑦 / 𝑥]𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | 
| 4 | sbn 1971 | . 2 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
| 5 | 1, 3, 4 | vtoclbg 2825 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1364 [wsb 1776 ∈ wcel 2167 [wsbc 2989 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 | 
| This theorem is referenced by: sbcn1 3037 sbcnel12g 3101 sbcne12g 3102 difopab 4799 zsupcllemstep 10319 | 
| Copyright terms: Public domain | W3C validator |