ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcng GIF version

Theorem sbcng 2987
Description: Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
sbcng (𝐴𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))

Proof of Theorem sbcng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2950 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥] ¬ 𝜑[𝐴 / 𝑥] ¬ 𝜑))
2 dfsbcq2 2950 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32notbid 657 . 2 (𝑦 = 𝐴 → (¬ [𝑦 / 𝑥]𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))
4 sbn 1939 . 2 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
51, 3, 4vtoclbg 2783 1 (𝐴𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104   = wceq 1342  [wsb 1749  wcel 2135  [wsbc 2947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-v 2724  df-sbc 2948
This theorem is referenced by:  sbcn1  2994  sbcnel12g  3058  sbcne12g  3059  difopab  4732  zsupcllemstep  11867
  Copyright terms: Public domain W3C validator