ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ GIF version

Theorem sbequ 1862
Description: An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbequ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))

Proof of Theorem sbequ
StepHypRef Expression
1 sbequi 1861 . 2 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))
2 sbequi 1861 . . 3 (𝑦 = 𝑥 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑))
32equcoms 1730 . 2 (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑))
41, 3impbid 129 1 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  [wsb 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785
This theorem is referenced by:  drsb2  1863  sbco2vlem  1971  sbco2v  1975  sbco2yz  1990  sbcocom  1997  sb10f  2022  hbsb4  2039  nfsb4or  2048  sb8eu  2066  sb8euh  2076  cbvab  2328  cbvralf  2729  cbvrexf  2730  cbvreu  2735  cbvralsv  2753  cbvrexsv  2754  cbvrab  2769  cbvreucsf  3157  cbvrabcsf  3158  sbss  3567  disjiun  4038  cbvopab1  4116  cbvmpt  4138  tfis  4630  findes  4650  cbviota  5236  sb8iota  5238  cbvriota  5909  uzind4s  9710  bezoutlemmain  12261  cbvrald  15657  setindft  15834
  Copyright terms: Public domain W3C validator