| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbequ | GIF version | ||
| Description: An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbequ | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequi 1853 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) | |
| 2 | sbequi 1853 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) | |
| 3 | 2 | equcoms 1722 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: drsb2 1855 sbco2vlem 1963 sbco2v 1967 sbco2yz 1982 sbcocom 1989 sb10f 2014 hbsb4 2031 nfsb4or 2040 sb8eu 2058 sb8euh 2068 cbvab 2320 cbvralf 2721 cbvrexf 2722 cbvreu 2727 cbvralsv 2745 cbvrexsv 2746 cbvrab 2761 cbvreucsf 3149 cbvrabcsf 3150 sbss 3559 disjiun 4029 cbvopab1 4107 cbvmpt 4129 tfis 4620 findes 4640 cbviota 5225 sb8iota 5227 cbvriota 5891 uzind4s 9681 bezoutlemmain 12190 cbvrald 15518 setindft 15695 |
| Copyright terms: Public domain | W3C validator |