Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbequ | GIF version |
Description: An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbequ | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequi 1827 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) | |
2 | sbequi 1827 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) | |
3 | 2 | equcoms 1696 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) |
4 | 1, 3 | impbid 128 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: drsb2 1829 sbco2vlem 1932 sbco2v 1936 sbco2yz 1951 sbcocom 1958 sb10f 1983 hbsb4 2000 nfsb4or 2009 sb8eu 2027 sb8euh 2037 cbvab 2290 cbvralf 2685 cbvrexf 2686 cbvreu 2690 cbvralsv 2708 cbvrexsv 2709 cbvrab 2724 cbvreucsf 3109 cbvrabcsf 3110 sbss 3517 disjiun 3977 cbvopab1 4055 cbvmpt 4077 tfis 4560 findes 4580 cbviota 5158 sb8iota 5160 cbvriota 5808 uzind4s 9528 bezoutlemmain 11931 cbvrald 13679 setindft 13857 |
Copyright terms: Public domain | W3C validator |