![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbequ | GIF version |
Description: An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbequ | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequi 1850 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) | |
2 | sbequi 1850 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) | |
3 | 2 | equcoms 1719 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) |
4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 [wsb 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 |
This theorem is referenced by: drsb2 1852 sbco2vlem 1956 sbco2v 1960 sbco2yz 1975 sbcocom 1982 sb10f 2007 hbsb4 2024 nfsb4or 2033 sb8eu 2051 sb8euh 2061 cbvab 2313 cbvralf 2710 cbvrexf 2711 cbvreu 2716 cbvralsv 2734 cbvrexsv 2735 cbvrab 2750 cbvreucsf 3136 cbvrabcsf 3137 sbss 3546 disjiun 4013 cbvopab1 4091 cbvmpt 4113 tfis 4600 findes 4620 cbviota 5201 sb8iota 5203 cbvriota 5863 uzind4s 9622 bezoutlemmain 12034 cbvrald 15018 setindft 15195 |
Copyright terms: Public domain | W3C validator |