Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbequ | GIF version |
Description: An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbequ | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequi 1832 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) | |
2 | sbequi 1832 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) | |
3 | 2 | equcoms 1701 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) |
4 | 1, 3 | impbid 128 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: drsb2 1834 sbco2vlem 1937 sbco2v 1941 sbco2yz 1956 sbcocom 1963 sb10f 1988 hbsb4 2005 nfsb4or 2014 sb8eu 2032 sb8euh 2042 cbvab 2294 cbvralf 2689 cbvrexf 2690 cbvreu 2694 cbvralsv 2712 cbvrexsv 2713 cbvrab 2728 cbvreucsf 3113 cbvrabcsf 3114 sbss 3523 disjiun 3984 cbvopab1 4062 cbvmpt 4084 tfis 4567 findes 4587 cbviota 5165 sb8iota 5167 cbvriota 5819 uzind4s 9549 bezoutlemmain 11953 cbvrald 13823 setindft 14000 |
Copyright terms: Public domain | W3C validator |