ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ GIF version

Theorem sbequ 1864
Description: An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbequ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))

Proof of Theorem sbequ
StepHypRef Expression
1 sbequi 1863 . 2 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))
2 sbequi 1863 . . 3 (𝑦 = 𝑥 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑))
32equcoms 1732 . 2 (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑))
41, 3impbid 129 1 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  drsb2  1865  sbco2vlem  1973  sbco2v  1977  sbco2yz  1992  sbcocom  1999  sb10f  2024  hbsb4  2041  nfsb4or  2050  sb8eu  2068  sb8euh  2078  cbvab  2330  cbvralf  2731  cbvrexf  2732  cbvreu  2737  cbvralsv  2755  cbvrexsv  2756  cbvrab  2771  cbvreucsf  3162  cbvrabcsf  3163  sbss  3572  disjiun  4046  cbvopab1  4125  cbvmpt  4147  tfis  4639  findes  4659  cbviota  5246  sb8iota  5248  cbvriota  5923  uzind4s  9731  bezoutlemmain  12394  cbvrald  15863  setindft  16039
  Copyright terms: Public domain W3C validator