| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbequ | GIF version | ||
| Description: An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbequ | ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequi 1885 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) | |
| 2 | sbequi 1885 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) | |
| 3 | 2 | equcoms 1754 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: drsb2 1887 sbco2vlem 1995 sbco2v 1999 sbco2yz 2014 sbcocom 2021 sb10f 2046 hbsb4 2063 nfsb4or 2072 sb8eu 2090 sb8euh 2100 cbvab 2353 cbvralf 2756 cbvrexf 2757 cbvreu 2763 cbvralsv 2781 cbvrexsv 2782 cbvrab 2797 cbvreucsf 3189 cbvrabcsf 3190 sbss 3599 disjiun 4077 cbvopab1 4156 cbvmpt 4178 tfis 4674 findes 4694 cbviota 5282 sb8iota 5285 cbvriota 5965 uzind4s 9781 bezoutlemmain 12514 cbvrald 16110 setindft 16286 |
| Copyright terms: Public domain | W3C validator |