| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbco2 | GIF version | ||
| Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbco2.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| sbco2 | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | nfri 1543 | . 2 ⊢ (𝜑 → ∀𝑧𝜑) |
| 3 | 2 | sbco2h 1993 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 Ⅎwnf 1484 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: nfsbt 2005 sb7af 2022 sbco4lem 2035 sbco4 2036 eqsb1 2310 clelsb1 2311 clelsb2 2312 sb8ab 2328 clelsb1f 2353 sbralie 2757 sbcco 3024 |
| Copyright terms: Public domain | W3C validator |