ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2 GIF version

Theorem sbco2 1958
Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
sbco2.1 𝑧𝜑
Assertion
Ref Expression
sbco2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbco2
StepHypRef Expression
1 sbco2.1 . . 3 𝑧𝜑
21nfri 1512 . 2 (𝜑 → ∀𝑧𝜑)
32sbco2h 1957 1 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  wnf 1453  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by:  nfsbt  1969  sb7af  1986  sbco4lem  1999  sbco4  2000  eqsb1  2274  clelsb1  2275  clelsb2  2276  sb8ab  2292  clelsb1f  2316  sbralie  2714  sbcco  2976
  Copyright terms: Public domain W3C validator