| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbco2 | GIF version | ||
| Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbco2.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| sbco2 | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | nfri 1565 | . 2 ⊢ (𝜑 → ∀𝑧𝜑) |
| 3 | 2 | sbco2h 2015 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 Ⅎwnf 1506 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: nfsbt 2027 sb7af 2044 sbco4lem 2057 sbco4 2058 eqsb1 2333 clelsb1 2334 clelsb2 2335 sb8ab 2351 clelsb1f 2376 sbralie 2783 sbcco 3050 |
| Copyright terms: Public domain | W3C validator |