ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2 GIF version

Theorem sbco2 1994
Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
sbco2.1 𝑧𝜑
Assertion
Ref Expression
sbco2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbco2
StepHypRef Expression
1 sbco2.1 . . 3 𝑧𝜑
21nfri 1543 . 2 (𝜑 → ∀𝑧𝜑)
32sbco2h 1993 1 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wnf 1484  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  nfsbt  2005  sb7af  2022  sbco4lem  2035  sbco4  2036  eqsb1  2310  clelsb1  2311  clelsb2  2312  sb8ab  2328  clelsb1f  2353  sbralie  2757  sbcco  3024
  Copyright terms: Public domain W3C validator