Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbco2 | GIF version |
Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
sbco2.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
sbco2 | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco2.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | nfri 1507 | . 2 ⊢ (𝜑 → ∀𝑧𝜑) |
3 | 2 | sbco2h 1952 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 Ⅎwnf 1448 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: nfsbt 1964 sb7af 1981 sbco4lem 1994 sbco4 1995 eqsb1 2270 clelsb1 2271 clelsb2 2272 sb8ab 2288 clelsb1f 2312 sbralie 2710 sbcco 2972 |
Copyright terms: Public domain | W3C validator |