ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2h GIF version

Theorem sbco2h 1991
Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
sbco2h.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
sbco2h ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbco2h
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbco2h.1 . . . . 5 (𝜑 → ∀𝑧𝜑)
21nfi 1484 . . . 4 𝑧𝜑
32sbco2yz 1990 . . 3 ([𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑)
43sbbii 1787 . 2 ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑤][𝑤 / 𝑥]𝜑)
5 nfv 1550 . . 3 𝑤[𝑧 / 𝑥]𝜑
65sbco2yz 1990 . 2 ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑)
7 nfv 1550 . . 3 𝑤𝜑
87sbco2yz 1990 . 2 ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
94, 6, 83bitr3i 210 1 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1370  [wsb 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785
This theorem is referenced by:  sbco2  1992  sbco2d  1993  sbco3  2001  sb9  2006  elsb1  2182  elsb2  2183
  Copyright terms: Public domain W3C validator