| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbco2h | GIF version | ||
| Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.) |
| Ref | Expression |
|---|---|
| sbco2h.1 | ⊢ (𝜑 → ∀𝑧𝜑) |
| Ref | Expression |
|---|---|
| sbco2h | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2h.1 | . . . . 5 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 2 | 1 | nfi 1484 | . . . 4 ⊢ Ⅎ𝑧𝜑 |
| 3 | 2 | sbco2yz 1990 | . . 3 ⊢ ([𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑) |
| 4 | 3 | sbbii 1787 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑤][𝑤 / 𝑥]𝜑) |
| 5 | nfv 1550 | . . 3 ⊢ Ⅎ𝑤[𝑧 / 𝑥]𝜑 | |
| 6 | 5 | sbco2yz 1990 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑) |
| 7 | nfv 1550 | . . 3 ⊢ Ⅎ𝑤𝜑 | |
| 8 | 7 | sbco2yz 1990 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 9 | 4, 6, 8 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1370 [wsb 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 |
| This theorem is referenced by: sbco2 1992 sbco2d 1993 sbco3 2001 sb9 2006 elsb1 2182 elsb2 2183 |
| Copyright terms: Public domain | W3C validator |