ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota4an GIF version

Theorem iota4an 5199
Description: Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4an (∃!𝑥(𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)

Proof of Theorem iota4an
StepHypRef Expression
1 iota4 5198 . 2 (∃!𝑥(𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓))
2 euiotaex 5196 . . . 4 (∃!𝑥(𝜑𝜓) → (℩𝑥(𝜑𝜓)) ∈ V)
3 simpl 109 . . . . 5 ((𝜑𝜓) → 𝜑)
43sbcth 2978 . . . 4 ((℩𝑥(𝜑𝜓)) ∈ V → [(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑))
52, 4syl 14 . . 3 (∃!𝑥(𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑))
6 sbcimg 3006 . . . 4 ((℩𝑥(𝜑𝜓)) ∈ V → ([(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)))
72, 6syl 14 . . 3 (∃!𝑥(𝜑𝜓) → ([(℩𝑥(𝜑𝜓)) / 𝑥]((𝜑𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)))
85, 7mpbid 147 . 2 (∃!𝑥(𝜑𝜓) → ([(℩𝑥(𝜑𝜓)) / 𝑥](𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑))
91, 8mpd 13 1 (∃!𝑥(𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  ∃!weu 2026  wcel 2148  Vcvv 2739  [wsbc 2964  cio 5178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-sn 3600  df-pr 3601  df-uni 3812  df-iota 5180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator