![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iota4an | GIF version |
Description: Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) |
Ref | Expression |
---|---|
iota4an | ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota4 5198 | . 2 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓)) | |
2 | euiotaex 5196 | . . . 4 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → (℩𝑥(𝜑 ∧ 𝜓)) ∈ V) | |
3 | simpl 109 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
4 | 3 | sbcth 2978 | . . . 4 ⊢ ((℩𝑥(𝜑 ∧ 𝜓)) ∈ V → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑)) |
5 | 2, 4 | syl 14 | . . 3 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑)) |
6 | sbcimg 3006 | . . . 4 ⊢ ((℩𝑥(𝜑 ∧ 𝜓)) ∈ V → ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑))) | |
7 | 2, 6 | syl 14 | . . 3 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑))) |
8 | 5, 7 | mpbid 147 | . 2 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑)) |
9 | 1, 8 | mpd 13 | 1 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃!weu 2026 ∈ wcel 2148 Vcvv 2739 [wsbc 2964 ℩cio 5178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-sn 3600 df-pr 3601 df-uni 3812 df-iota 5180 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |