| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iota4an | GIF version | ||
| Description: Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) |
| Ref | Expression |
|---|---|
| iota4an | ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota4 5238 | . 2 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓)) | |
| 2 | euiotaex 5235 | . . . 4 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → (℩𝑥(𝜑 ∧ 𝜓)) ∈ V) | |
| 3 | simpl 109 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 4 | 3 | sbcth 3003 | . . . 4 ⊢ ((℩𝑥(𝜑 ∧ 𝜓)) ∈ V → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑)) |
| 5 | 2, 4 | syl 14 | . . 3 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑)) |
| 6 | sbcimg 3031 | . . . 4 ⊢ ((℩𝑥(𝜑 ∧ 𝜓)) ∈ V → ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑))) | |
| 7 | 2, 6 | syl 14 | . . 3 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑))) |
| 8 | 5, 7 | mpbid 147 | . 2 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑)) |
| 9 | 1, 8 | mpd 13 | 1 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃!weu 2045 ∈ wcel 2167 Vcvv 2763 [wsbc 2989 ℩cio 5217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |