![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iota4an | GIF version |
Description: Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.) |
Ref | Expression |
---|---|
iota4an | ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota4 5064 | . 2 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓)) | |
2 | euiotaex 5062 | . . . 4 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → (℩𝑥(𝜑 ∧ 𝜓)) ∈ V) | |
3 | simpl 108 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
4 | 3 | sbcth 2891 | . . . 4 ⊢ ((℩𝑥(𝜑 ∧ 𝜓)) ∈ V → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑)) |
5 | 2, 4 | syl 14 | . . 3 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑)) |
6 | sbcimg 2918 | . . . 4 ⊢ ((℩𝑥(𝜑 ∧ 𝜓)) ∈ V → ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑))) | |
7 | 2, 6 | syl 14 | . . 3 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]((𝜑 ∧ 𝜓) → 𝜑) ↔ ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑))) |
8 | 5, 7 | mpbid 146 | . 2 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → ([(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥](𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑)) |
9 | 1, 8 | mpd 13 | 1 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → [(℩𝑥(𝜑 ∧ 𝜓)) / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 1463 ∃!weu 1975 Vcvv 2657 [wsbc 2878 ℩cio 5044 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-rex 2396 df-v 2659 df-sbc 2879 df-un 3041 df-sn 3499 df-pr 3500 df-uni 3703 df-iota 5046 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |