ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeliunxp GIF version

Theorem opeliunxp 4735
Description: Membership in a union of cross products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
opeliunxp (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐶𝐵))

Proof of Theorem opeliunxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2785 . 2 (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) → ⟨𝑥, 𝐶⟩ ∈ V)
2 opexg 4277 . 2 ((𝑥𝐴𝐶𝐵) → ⟨𝑥, 𝐶⟩ ∈ V)
3 df-rex 2491 . . . . . 6 (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑥(𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵)))
4 nfv 1552 . . . . . . 7 𝑧(𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵))
5 nfs1v 1968 . . . . . . . 8 𝑥[𝑧 / 𝑥]𝑥𝐴
6 nfcv 2349 . . . . . . . . . 10 𝑥{𝑧}
7 nfcsb1v 3128 . . . . . . . . . 10 𝑥𝑧 / 𝑥𝐵
86, 7nfxp 4707 . . . . . . . . 9 𝑥({𝑧} × 𝑧 / 𝑥𝐵)
98nfcri 2343 . . . . . . . 8 𝑥 𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)
105, 9nfan 1589 . . . . . . 7 𝑥([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵))
11 sbequ12 1795 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐴 ↔ [𝑧 / 𝑥]𝑥𝐴))
12 sneq 3646 . . . . . . . . . 10 (𝑥 = 𝑧 → {𝑥} = {𝑧})
13 csbeq1a 3104 . . . . . . . . . 10 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
1412, 13xpeq12d 4705 . . . . . . . . 9 (𝑥 = 𝑧 → ({𝑥} × 𝐵) = ({𝑧} × 𝑧 / 𝑥𝐵))
1514eleq2d 2276 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 ∈ ({𝑥} × 𝐵) ↔ 𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
1611, 15anbi12d 473 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵)) ↔ ([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
174, 10, 16cbvex 1780 . . . . . 6 (∃𝑥(𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
183, 17bitri 184 . . . . 5 (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
19 eleq1 2269 . . . . . . 7 (𝑦 = ⟨𝑥, 𝐶⟩ → (𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵) ↔ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
2019anbi2d 464 . . . . . 6 (𝑦 = ⟨𝑥, 𝐶⟩ → (([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
2120exbidv 1849 . . . . 5 (𝑦 = ⟨𝑥, 𝐶⟩ → (∃𝑧([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
2218, 21bitrid 192 . . . 4 (𝑦 = ⟨𝑥, 𝐶⟩ → (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
23 df-iun 3932 . . . 4 𝑥𝐴 ({𝑥} × 𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)}
2422, 23elab2g 2922 . . 3 (⟨𝑥, 𝐶⟩ ∈ V → (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
25 opelxp 4710 . . . . . . 7 (⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵) ↔ (𝑥 ∈ {𝑧} ∧ 𝐶𝑧 / 𝑥𝐵))
2625anbi2i 457 . . . . . 6 (([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶𝑧 / 𝑥𝐵)))
27 an12 561 . . . . . 6 (([𝑧 / 𝑥]𝑥𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶𝑧 / 𝑥𝐵)) ↔ (𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
28 velsn 3652 . . . . . . . 8 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
29 equcom 1730 . . . . . . . 8 (𝑥 = 𝑧𝑧 = 𝑥)
3028, 29bitri 184 . . . . . . 7 (𝑥 ∈ {𝑧} ↔ 𝑧 = 𝑥)
3130anbi1i 458 . . . . . 6 ((𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
3226, 27, 313bitri 206 . . . . 5 (([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
3332exbii 1629 . . . 4 (∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
34 vex 2776 . . . . 5 𝑥 ∈ V
35 sbequ12r 1796 . . . . . 6 (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝑥𝐴𝑥𝐴))
3613equcoms 1732 . . . . . . . 8 (𝑧 = 𝑥𝐵 = 𝑧 / 𝑥𝐵)
3736eqcomd 2212 . . . . . . 7 (𝑧 = 𝑥𝑧 / 𝑥𝐵 = 𝐵)
3837eleq2d 2276 . . . . . 6 (𝑧 = 𝑥 → (𝐶𝑧 / 𝑥𝐵𝐶𝐵))
3935, 38anbi12d 473 . . . . 5 (𝑧 = 𝑥 → (([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵) ↔ (𝑥𝐴𝐶𝐵)))
4034, 39ceqsexv 2813 . . . 4 (∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)) ↔ (𝑥𝐴𝐶𝐵))
4133, 40bitri 184 . . 3 (∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ (𝑥𝐴𝐶𝐵))
4224, 41bitrdi 196 . 2 (⟨𝑥, 𝐶⟩ ∈ V → (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐶𝐵)))
431, 2, 42pm5.21nii 706 1 (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wex 1516  [wsb 1786  wcel 2177  wrex 2486  Vcvv 2773  csb 3095  {csn 3635  cop 3638   ciun 3930   × cxp 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-csb 3096  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-iun 3932  df-opab 4111  df-xp 4686
This theorem is referenced by:  eliunxp  4822  opeliunxp2  4823  opeliunxp2f  6334
  Copyright terms: Public domain W3C validator