Step | Hyp | Ref
| Expression |
1 | | elex 2741 |
. 2
⊢
(〈𝑥, 𝐶〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → 〈𝑥, 𝐶〉 ∈ V) |
2 | | opexg 4213 |
. 2
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → 〈𝑥, 𝐶〉 ∈ V) |
3 | | df-rex 2454 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) |
4 | | nfv 1521 |
. . . . . . 7
⊢
Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑥} × 𝐵)) |
5 | | nfs1v 1932 |
. . . . . . . 8
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝑥 ∈ 𝐴 |
6 | | nfcv 2312 |
. . . . . . . . . 10
⊢
Ⅎ𝑥{𝑧} |
7 | | nfcsb1v 3082 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 |
8 | 6, 7 | nfxp 4638 |
. . . . . . . . 9
⊢
Ⅎ𝑥({𝑧} × ⦋𝑧 / 𝑥⦌𝐵) |
9 | 8 | nfcri 2306 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵) |
10 | 5, 9 | nfan 1558 |
. . . . . . 7
⊢
Ⅎ𝑥([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) |
11 | | sbequ12 1764 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ [𝑧 / 𝑥]𝑥 ∈ 𝐴)) |
12 | | sneq 3594 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) |
13 | | csbeq1a 3058 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
14 | 12, 13 | xpeq12d 4636 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → ({𝑥} × 𝐵) = ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) |
15 | 14 | eleq2d 2240 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑦 ∈ ({𝑥} × 𝐵) ↔ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵))) |
16 | 11, 15 | anbi12d 470 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑥} × 𝐵)) ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)))) |
17 | 4, 10, 16 | cbvex 1749 |
. . . . . 6
⊢
(∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑥} × 𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵))) |
18 | 3, 17 | bitri 183 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵))) |
19 | | eleq1 2233 |
. . . . . . 7
⊢ (𝑦 = 〈𝑥, 𝐶〉 → (𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵) ↔ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵))) |
20 | 19 | anbi2d 461 |
. . . . . 6
⊢ (𝑦 = 〈𝑥, 𝐶〉 → (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)))) |
21 | 20 | exbidv 1818 |
. . . . 5
⊢ (𝑦 = 〈𝑥, 𝐶〉 → (∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)))) |
22 | 18, 21 | syl5bb 191 |
. . . 4
⊢ (𝑦 = 〈𝑥, 𝐶〉 → (∃𝑥 ∈ 𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)))) |
23 | | df-iun 3875 |
. . . 4
⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ ({𝑥} × 𝐵)} |
24 | 22, 23 | elab2g 2877 |
. . 3
⊢
(〈𝑥, 𝐶〉 ∈ V →
(〈𝑥, 𝐶〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)))) |
25 | | opelxp 4641 |
. . . . . . 7
⊢
(〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵) ↔ (𝑥 ∈ {𝑧} ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵)) |
26 | 25 | anbi2i 454 |
. . . . . 6
⊢ (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵))) |
27 | | an12 556 |
. . . . . 6
⊢ (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵)) ↔ (𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵))) |
28 | | velsn 3600 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧) |
29 | | equcom 1699 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 ↔ 𝑧 = 𝑥) |
30 | 28, 29 | bitri 183 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑧} ↔ 𝑧 = 𝑥) |
31 | 30 | anbi1i 455 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵))) |
32 | 26, 27, 31 | 3bitri 205 |
. . . . 5
⊢ (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵))) |
33 | 32 | exbii 1598 |
. . . 4
⊢
(∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ ∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵))) |
34 | | vex 2733 |
. . . . 5
⊢ 𝑥 ∈ V |
35 | | sbequ12r 1765 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
36 | 13 | equcoms 1701 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
37 | 36 | eqcomd 2176 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → ⦋𝑧 / 𝑥⦌𝐵 = 𝐵) |
38 | 37 | eleq2d 2240 |
. . . . . 6
⊢ (𝑧 = 𝑥 → (𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵 ↔ 𝐶 ∈ 𝐵)) |
39 | 35, 38 | anbi12d 470 |
. . . . 5
⊢ (𝑧 = 𝑥 → (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵))) |
40 | 34, 39 | ceqsexv 2769 |
. . . 4
⊢
(∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) |
41 | 33, 40 | bitri 183 |
. . 3
⊢
(∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) |
42 | 24, 41 | bitrdi 195 |
. 2
⊢
(〈𝑥, 𝐶〉 ∈ V →
(〈𝑥, 𝐶〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵))) |
43 | 1, 2, 42 | pm5.21nii 699 |
1
⊢
(〈𝑥, 𝐶〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) |