| Step | Hyp | Ref
 | Expression | 
| 1 |   | elex 2774 | 
. 2
⊢
(〈𝑥, 𝐶〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → 〈𝑥, 𝐶〉 ∈ V) | 
| 2 |   | opexg 4261 | 
. 2
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → 〈𝑥, 𝐶〉 ∈ V) | 
| 3 |   | df-rex 2481 | 
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) | 
| 4 |   | nfv 1542 | 
. . . . . . 7
⊢
Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑥} × 𝐵)) | 
| 5 |   | nfs1v 1958 | 
. . . . . . . 8
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝑥 ∈ 𝐴 | 
| 6 |   | nfcv 2339 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥{𝑧} | 
| 7 |   | nfcsb1v 3117 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 | 
| 8 | 6, 7 | nfxp 4690 | 
. . . . . . . . 9
⊢
Ⅎ𝑥({𝑧} × ⦋𝑧 / 𝑥⦌𝐵) | 
| 9 | 8 | nfcri 2333 | 
. . . . . . . 8
⊢
Ⅎ𝑥 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵) | 
| 10 | 5, 9 | nfan 1579 | 
. . . . . . 7
⊢
Ⅎ𝑥([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) | 
| 11 |   | sbequ12 1785 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ [𝑧 / 𝑥]𝑥 ∈ 𝐴)) | 
| 12 |   | sneq 3633 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) | 
| 13 |   | csbeq1a 3093 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | 
| 14 | 12, 13 | xpeq12d 4688 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → ({𝑥} × 𝐵) = ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) | 
| 15 | 14 | eleq2d 2266 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑦 ∈ ({𝑥} × 𝐵) ↔ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵))) | 
| 16 | 11, 15 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑥} × 𝐵)) ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)))) | 
| 17 | 4, 10, 16 | cbvex 1770 | 
. . . . . 6
⊢
(∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑥} × 𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵))) | 
| 18 | 3, 17 | bitri 184 | 
. . . . 5
⊢
(∃𝑥 ∈
𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵))) | 
| 19 |   | eleq1 2259 | 
. . . . . . 7
⊢ (𝑦 = 〈𝑥, 𝐶〉 → (𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵) ↔ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵))) | 
| 20 | 19 | anbi2d 464 | 
. . . . . 6
⊢ (𝑦 = 〈𝑥, 𝐶〉 → (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)))) | 
| 21 | 20 | exbidv 1839 | 
. . . . 5
⊢ (𝑦 = 〈𝑥, 𝐶〉 → (∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)))) | 
| 22 | 18, 21 | bitrid 192 | 
. . . 4
⊢ (𝑦 = 〈𝑥, 𝐶〉 → (∃𝑥 ∈ 𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)))) | 
| 23 |   | df-iun 3918 | 
. . . 4
⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ ({𝑥} × 𝐵)} | 
| 24 | 22, 23 | elab2g 2911 | 
. . 3
⊢
(〈𝑥, 𝐶〉 ∈ V →
(〈𝑥, 𝐶〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)))) | 
| 25 |   | opelxp 4693 | 
. . . . . . 7
⊢
(〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵) ↔ (𝑥 ∈ {𝑧} ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵)) | 
| 26 | 25 | anbi2i 457 | 
. . . . . 6
⊢ (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵))) | 
| 27 |   | an12 561 | 
. . . . . 6
⊢ (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵)) ↔ (𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵))) | 
| 28 |   | velsn 3639 | 
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧) | 
| 29 |   | equcom 1720 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 ↔ 𝑧 = 𝑥) | 
| 30 | 28, 29 | bitri 184 | 
. . . . . . 7
⊢ (𝑥 ∈ {𝑧} ↔ 𝑧 = 𝑥) | 
| 31 | 30 | anbi1i 458 | 
. . . . . 6
⊢ ((𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵))) | 
| 32 | 26, 27, 31 | 3bitri 206 | 
. . . . 5
⊢ (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵))) | 
| 33 | 32 | exbii 1619 | 
. . . 4
⊢
(∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ ∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵))) | 
| 34 |   | vex 2766 | 
. . . . 5
⊢ 𝑥 ∈ V | 
| 35 |   | sbequ12r 1786 | 
. . . . . 6
⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | 
| 36 | 13 | equcoms 1722 | 
. . . . . . . 8
⊢ (𝑧 = 𝑥 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | 
| 37 | 36 | eqcomd 2202 | 
. . . . . . 7
⊢ (𝑧 = 𝑥 → ⦋𝑧 / 𝑥⦌𝐵 = 𝐵) | 
| 38 | 37 | eleq2d 2266 | 
. . . . . 6
⊢ (𝑧 = 𝑥 → (𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵 ↔ 𝐶 ∈ 𝐵)) | 
| 39 | 35, 38 | anbi12d 473 | 
. . . . 5
⊢ (𝑧 = 𝑥 → (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵))) | 
| 40 | 34, 39 | ceqsexv 2802 | 
. . . 4
⊢
(∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ⦋𝑧 / 𝑥⦌𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) | 
| 41 | 33, 40 | bitri 184 | 
. . 3
⊢
(∃𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ 〈𝑥, 𝐶〉 ∈ ({𝑧} × ⦋𝑧 / 𝑥⦌𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) | 
| 42 | 24, 41 | bitrdi 196 | 
. 2
⊢
(〈𝑥, 𝐶〉 ∈ V →
(〈𝑥, 𝐶〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵))) | 
| 43 | 1, 2, 42 | pm5.21nii 705 | 
1
⊢
(〈𝑥, 𝐶〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) |