| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isarep1 | GIF version | ||
| Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by 𝜑(𝑥, 𝑦) i.e. the class ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
| Ref | Expression |
|---|---|
| isarep1 | ⊢ (𝑏 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . 3 ⊢ 𝑏 ∈ V | |
| 2 | 1 | elima 5072 | . 2 ⊢ (𝑏 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ↔ ∃𝑧 ∈ 𝐴 𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏) |
| 3 | df-br 4083 | . . . 4 ⊢ (𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏 ↔ 〈𝑧, 𝑏〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 4 | opelopabsb 4347 | . . . 4 ⊢ (〈𝑧, 𝑏〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) | |
| 5 | sbsbc 3032 | . . . . . 6 ⊢ ([𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑) | |
| 6 | 5 | sbbii 1811 | . . . . 5 ⊢ ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
| 7 | sbsbc 3032 | . . . . 5 ⊢ ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) | |
| 8 | 6, 7 | bitr2i 185 | . . . 4 ⊢ ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
| 9 | 3, 4, 8 | 3bitri 206 | . . 3 ⊢ (𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
| 10 | 9 | rexbii 2537 | . 2 ⊢ (∃𝑧 ∈ 𝐴 𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏 ↔ ∃𝑧 ∈ 𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
| 11 | nfs1v 1990 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑥][𝑏 / 𝑦]𝜑 | |
| 12 | nfv 1574 | . . 3 ⊢ Ⅎ𝑧[𝑏 / 𝑦]𝜑 | |
| 13 | sbequ12r 1818 | . . 3 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) | |
| 14 | 11, 12, 13 | cbvrex 2762 | . 2 ⊢ (∃𝑧 ∈ 𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) |
| 15 | 2, 10, 14 | 3bitri 206 | 1 ⊢ (𝑏 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1808 ∈ wcel 2200 ∃wrex 2509 [wsbc 3028 〈cop 3669 class class class wbr 4082 {copab 4143 “ cima 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |