ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isarep1 GIF version

Theorem isarep1 5359
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by 𝜑(𝑥, 𝑦) i.e. the class ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
isarep1 (𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑥𝐴 [𝑏 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑏,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑏)   𝐴(𝑦,𝑏)

Proof of Theorem isarep1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vex 2774 . . 3 𝑏 ∈ V
21elima 5026 . 2 (𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑧𝐴 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏)
3 df-br 4044 . . . 4 (𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏 ↔ ⟨𝑧, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
4 opelopabsb 4305 . . . 4 (⟨𝑧, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑)
5 sbsbc 3001 . . . . . 6 ([𝑏 / 𝑦]𝜑[𝑏 / 𝑦]𝜑)
65sbbii 1787 . . . . 5 ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑)
7 sbsbc 3001 . . . . 5 ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑[𝑧 / 𝑥][𝑏 / 𝑦]𝜑)
86, 7bitr2i 185 . . . 4 ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑)
93, 4, 83bitri 206 . . 3 (𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑)
109rexbii 2512 . 2 (∃𝑧𝐴 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏 ↔ ∃𝑧𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑)
11 nfs1v 1966 . . 3 𝑥[𝑧 / 𝑥][𝑏 / 𝑦]𝜑
12 nfv 1550 . . 3 𝑧[𝑏 / 𝑦]𝜑
13 sbequ12r 1794 . . 3 (𝑧 = 𝑥 → ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑))
1411, 12, 13cbvrex 2734 . 2 (∃𝑧𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ ∃𝑥𝐴 [𝑏 / 𝑦]𝜑)
152, 10, 143bitri 206 1 (𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑥𝐴 [𝑏 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1784  wcel 2175  wrex 2484  [wsbc 2997  cop 3635   class class class wbr 4043  {copab 4103  cima 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-cnv 4682  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator