ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isarep1 GIF version

Theorem isarep1 5177
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by 𝜑(𝑥, 𝑦) i.e. the class ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
isarep1 (𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑥𝐴 [𝑏 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑏,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑏)   𝐴(𝑦,𝑏)

Proof of Theorem isarep1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vex 2661 . . 3 𝑏 ∈ V
21elima 4854 . 2 (𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑧𝐴 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏)
3 df-br 3898 . . . 4 (𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏 ↔ ⟨𝑧, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
4 opelopabsb 4150 . . . 4 (⟨𝑧, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑)
5 sbsbc 2884 . . . . . 6 ([𝑏 / 𝑦]𝜑[𝑏 / 𝑦]𝜑)
65sbbii 1721 . . . . 5 ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑)
7 sbsbc 2884 . . . . 5 ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑[𝑧 / 𝑥][𝑏 / 𝑦]𝜑)
86, 7bitr2i 184 . . . 4 ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑)
93, 4, 83bitri 205 . . 3 (𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑)
109rexbii 2417 . 2 (∃𝑧𝐴 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏 ↔ ∃𝑧𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑)
11 nfs1v 1890 . . 3 𝑥[𝑧 / 𝑥][𝑏 / 𝑦]𝜑
12 nfv 1491 . . 3 𝑧[𝑏 / 𝑦]𝜑
13 sbequ12r 1728 . . 3 (𝑧 = 𝑥 → ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑))
1411, 12, 13cbvrex 2626 . 2 (∃𝑧𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ ∃𝑥𝐴 [𝑏 / 𝑦]𝜑)
152, 10, 143bitri 205 1 (𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑥𝐴 [𝑏 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 1463  [wsb 1718  wrex 2392  [wsbc 2880  cop 3498   class class class wbr 3897  {copab 3956  cima 4510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-xp 4513  df-cnv 4515  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator