Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oprcl | GIF version |
Description: If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
oprcl | ⊢ (𝐶 ∈ 〈𝐴, 𝐵〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex2 2746 | . 2 ⊢ (𝐶 ∈ 〈𝐴, 𝐵〉 → ∃𝑦 𝑦 ∈ 〈𝐴, 𝐵〉) | |
2 | df-op 3592 | . . . . . . 7 ⊢ 〈𝐴, 𝐵〉 = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} | |
3 | 2 | eleq2i 2237 | . . . . . 6 ⊢ (𝑦 ∈ 〈𝐴, 𝐵〉 ↔ 𝑦 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}) |
4 | df-clab 2157 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ↔ [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})) | |
5 | 3, 4 | bitri 183 | . . . . 5 ⊢ (𝑦 ∈ 〈𝐴, 𝐵〉 ↔ [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})) |
6 | 3simpa 989 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
7 | 6 | sbimi 1757 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V)) |
8 | 5, 7 | sylbi 120 | . . . 4 ⊢ (𝑦 ∈ 〈𝐴, 𝐵〉 → [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V)) |
9 | nfv 1521 | . . . . 5 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V) | |
10 | 9 | sbf 1770 | . . . 4 ⊢ ([𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
11 | 8, 10 | sylib 121 | . . 3 ⊢ (𝑦 ∈ 〈𝐴, 𝐵〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
12 | 11 | exlimiv 1591 | . 2 ⊢ (∃𝑦 𝑦 ∈ 〈𝐴, 𝐵〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
13 | 1, 12 | syl 14 | 1 ⊢ (𝐶 ∈ 〈𝐴, 𝐵〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 ∃wex 1485 [wsb 1755 ∈ wcel 2141 {cab 2156 Vcvv 2730 {csn 3583 {cpr 3584 〈cop 3586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 df-op 3592 |
This theorem is referenced by: opth1 4221 opth 4222 0nelop 4233 |
Copyright terms: Public domain | W3C validator |