![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oprcl | GIF version |
Description: If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
oprcl | ⊢ (𝐶 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex2 2755 | . 2 ⊢ (𝐶 ∈ ⟨𝐴, 𝐵⟩ → ∃𝑦 𝑦 ∈ ⟨𝐴, 𝐵⟩) | |
2 | df-op 3603 | . . . . . . 7 ⊢ ⟨𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} | |
3 | 2 | eleq2i 2244 | . . . . . 6 ⊢ (𝑦 ∈ ⟨𝐴, 𝐵⟩ ↔ 𝑦 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}) |
4 | df-clab 2164 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ↔ [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})) | |
5 | 3, 4 | bitri 184 | . . . . 5 ⊢ (𝑦 ∈ ⟨𝐴, 𝐵⟩ ↔ [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})) |
6 | 3simpa 994 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
7 | 6 | sbimi 1764 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V)) |
8 | 5, 7 | sylbi 121 | . . . 4 ⊢ (𝑦 ∈ ⟨𝐴, 𝐵⟩ → [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V)) |
9 | nfv 1528 | . . . . 5 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V) | |
10 | 9 | sbf 1777 | . . . 4 ⊢ ([𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
11 | 8, 10 | sylib 122 | . . 3 ⊢ (𝑦 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
12 | 11 | exlimiv 1598 | . 2 ⊢ (∃𝑦 𝑦 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
13 | 1, 12 | syl 14 | 1 ⊢ (𝐶 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∃wex 1492 [wsb 1762 ∈ wcel 2148 {cab 2163 Vcvv 2739 {csn 3594 {cpr 3595 ⟨cop 3597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2741 df-op 3603 |
This theorem is referenced by: opth1 4238 opth 4239 0nelop 4250 |
Copyright terms: Public domain | W3C validator |