ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprcl GIF version

Theorem oprcl 3804
Description: If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
oprcl (𝐶 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem oprcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex2 2755 . 2 (𝐶 ∈ ⟨𝐴, 𝐵⟩ → ∃𝑦 𝑦 ∈ ⟨𝐴, 𝐵⟩)
2 df-op 3603 . . . . . . 7 𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
32eleq2i 2244 . . . . . 6 (𝑦 ∈ ⟨𝐴, 𝐵⟩ ↔ 𝑦 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})})
4 df-clab 2164 . . . . . 6 (𝑦 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ↔ [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
53, 4bitri 184 . . . . 5 (𝑦 ∈ ⟨𝐴, 𝐵⟩ ↔ [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
6 3simpa 994 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
76sbimi 1764 . . . . 5 ([𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V))
85, 7sylbi 121 . . . 4 (𝑦 ∈ ⟨𝐴, 𝐵⟩ → [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V))
9 nfv 1528 . . . . 5 𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V)
109sbf 1777 . . . 4 ([𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
118, 10sylib 122 . . 3 (𝑦 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1211exlimiv 1598 . 2 (∃𝑦 𝑦 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
131, 12syl 14 1 (𝐶 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978  wex 1492  [wsb 1762  wcel 2148  {cab 2163  Vcvv 2739  {csn 3594  {cpr 3595  cop 3597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741  df-op 3603
This theorem is referenced by:  opth1  4238  opth  4239  0nelop  4250
  Copyright terms: Public domain W3C validator