| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oprcl | GIF version | ||
| Description: If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| oprcl | ⊢ (𝐶 ∈ 〈𝐴, 𝐵〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex2 2787 | . 2 ⊢ (𝐶 ∈ 〈𝐴, 𝐵〉 → ∃𝑦 𝑦 ∈ 〈𝐴, 𝐵〉) | |
| 2 | df-op 3641 | . . . . . . 7 ⊢ 〈𝐴, 𝐵〉 = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} | |
| 3 | 2 | eleq2i 2271 | . . . . . 6 ⊢ (𝑦 ∈ 〈𝐴, 𝐵〉 ↔ 𝑦 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}) |
| 4 | df-clab 2191 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ↔ [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})) | |
| 5 | 3, 4 | bitri 184 | . . . . 5 ⊢ (𝑦 ∈ 〈𝐴, 𝐵〉 ↔ [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})) |
| 6 | 3simpa 996 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 7 | 6 | sbimi 1786 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 8 | 5, 7 | sylbi 121 | . . . 4 ⊢ (𝑦 ∈ 〈𝐴, 𝐵〉 → [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 9 | nfv 1550 | . . . . 5 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V) | |
| 10 | 9 | sbf 1799 | . . . 4 ⊢ ([𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 11 | 8, 10 | sylib 122 | . . 3 ⊢ (𝑦 ∈ 〈𝐴, 𝐵〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 12 | 11 | exlimiv 1620 | . 2 ⊢ (∃𝑦 𝑦 ∈ 〈𝐴, 𝐵〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 13 | 1, 12 | syl 14 | 1 ⊢ (𝐶 ∈ 〈𝐴, 𝐵〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∃wex 1514 [wsb 1784 ∈ wcel 2175 {cab 2190 Vcvv 2771 {csn 3632 {cpr 3633 〈cop 3635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 df-op 3641 |
| This theorem is referenced by: opth1 4279 opth 4280 0nelop 4291 |
| Copyright terms: Public domain | W3C validator |