ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprcl GIF version

Theorem oprcl 3782
Description: If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
oprcl (𝐶 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem oprcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex2 2742 . 2 (𝐶 ∈ ⟨𝐴, 𝐵⟩ → ∃𝑦 𝑦 ∈ ⟨𝐴, 𝐵⟩)
2 df-op 3585 . . . . . . 7 𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
32eleq2i 2233 . . . . . 6 (𝑦 ∈ ⟨𝐴, 𝐵⟩ ↔ 𝑦 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})})
4 df-clab 2152 . . . . . 6 (𝑦 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ↔ [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
53, 4bitri 183 . . . . 5 (𝑦 ∈ ⟨𝐴, 𝐵⟩ ↔ [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
6 3simpa 984 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
76sbimi 1752 . . . . 5 ([𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V))
85, 7sylbi 120 . . . 4 (𝑦 ∈ ⟨𝐴, 𝐵⟩ → [𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V))
9 nfv 1516 . . . . 5 𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V)
109sbf 1765 . . . 4 ([𝑦 / 𝑥](𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
118, 10sylib 121 . . 3 (𝑦 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1211exlimiv 1586 . 2 (∃𝑦 𝑦 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
131, 12syl 14 1 (𝐶 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968  wex 1480  [wsb 1750  wcel 2136  {cab 2151  Vcvv 2726  {csn 3576  {cpr 3577  cop 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728  df-op 3585
This theorem is referenced by:  opth1  4214  opth  4215  0nelop  4226
  Copyright terms: Public domain W3C validator