Step | Hyp | Ref
| Expression |
1 | | sbex 1997 |
. . 3
⊢ ([𝑦 / 𝑥]∃𝑣(𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴) ↔ ∃𝑣[𝑦 / 𝑥](𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴)) |
2 | | sban 1948 |
. . . . 5
⊢ ([𝑦 / 𝑥](𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴) ↔ ([𝑦 / 𝑥]𝑣 = {𝑧 ∣ 𝜑} ∧ [𝑦 / 𝑥]𝑣 ∈ 𝐴)) |
3 | | nfv 1521 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑧 ∈ 𝑣 |
4 | 3 | sbf 1770 |
. . . . . . . . 9
⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣) |
5 | 4 | sbrbis 1954 |
. . . . . . . 8
⊢ ([𝑦 / 𝑥](𝑧 ∈ 𝑣 ↔ 𝜑) ↔ (𝑧 ∈ 𝑣 ↔ [𝑦 / 𝑥]𝜑)) |
6 | 5 | sbalv 1998 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]∀𝑧(𝑧 ∈ 𝑣 ↔ 𝜑) ↔ ∀𝑧(𝑧 ∈ 𝑣 ↔ [𝑦 / 𝑥]𝜑)) |
7 | | abeq2 2279 |
. . . . . . . 8
⊢ (𝑣 = {𝑧 ∣ 𝜑} ↔ ∀𝑧(𝑧 ∈ 𝑣 ↔ 𝜑)) |
8 | 7 | sbbii 1758 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]𝑣 = {𝑧 ∣ 𝜑} ↔ [𝑦 / 𝑥]∀𝑧(𝑧 ∈ 𝑣 ↔ 𝜑)) |
9 | | abeq2 2279 |
. . . . . . 7
⊢ (𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ↔ ∀𝑧(𝑧 ∈ 𝑣 ↔ [𝑦 / 𝑥]𝜑)) |
10 | 6, 8, 9 | 3bitr4i 211 |
. . . . . 6
⊢ ([𝑦 / 𝑥]𝑣 = {𝑧 ∣ 𝜑} ↔ 𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑}) |
11 | | sbabel.1 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐴 |
12 | 11 | nfcri 2306 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑣 ∈ 𝐴 |
13 | 12 | sbf 1770 |
. . . . . 6
⊢ ([𝑦 / 𝑥]𝑣 ∈ 𝐴 ↔ 𝑣 ∈ 𝐴) |
14 | 10, 13 | anbi12i 457 |
. . . . 5
⊢ (([𝑦 / 𝑥]𝑣 = {𝑧 ∣ 𝜑} ∧ [𝑦 / 𝑥]𝑣 ∈ 𝐴) ↔ (𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∧ 𝑣 ∈ 𝐴)) |
15 | 2, 14 | bitri 183 |
. . . 4
⊢ ([𝑦 / 𝑥](𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴) ↔ (𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∧ 𝑣 ∈ 𝐴)) |
16 | 15 | exbii 1598 |
. . 3
⊢
(∃𝑣[𝑦 / 𝑥](𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴) ↔ ∃𝑣(𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∧ 𝑣 ∈ 𝐴)) |
17 | 1, 16 | bitri 183 |
. 2
⊢ ([𝑦 / 𝑥]∃𝑣(𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴) ↔ ∃𝑣(𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∧ 𝑣 ∈ 𝐴)) |
18 | | df-clel 2166 |
. . 3
⊢ ({𝑧 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑣(𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴)) |
19 | 18 | sbbii 1758 |
. 2
⊢ ([𝑦 / 𝑥]{𝑧 ∣ 𝜑} ∈ 𝐴 ↔ [𝑦 / 𝑥]∃𝑣(𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴)) |
20 | | df-clel 2166 |
. 2
⊢ ({𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴 ↔ ∃𝑣(𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∧ 𝑣 ∈ 𝐴)) |
21 | 17, 19, 20 | 3bitr4i 211 |
1
⊢ ([𝑦 / 𝑥]{𝑧 ∣ 𝜑} ∈ 𝐴 ↔ {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴) |