ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbabel GIF version

Theorem sbabel 2346
Description: Theorem to move a substitution in and out of a class abstraction. (Contributed by NM, 27-Sep-2003.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
sbabel.1 𝑥𝐴
Assertion
Ref Expression
sbabel ([𝑦 / 𝑥]{𝑧𝜑} ∈ 𝐴 ↔ {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem sbabel
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 sbex 2004 . . 3 ([𝑦 / 𝑥]∃𝑣(𝑣 = {𝑧𝜑} ∧ 𝑣𝐴) ↔ ∃𝑣[𝑦 / 𝑥](𝑣 = {𝑧𝜑} ∧ 𝑣𝐴))
2 sban 1955 . . . . 5 ([𝑦 / 𝑥](𝑣 = {𝑧𝜑} ∧ 𝑣𝐴) ↔ ([𝑦 / 𝑥]𝑣 = {𝑧𝜑} ∧ [𝑦 / 𝑥]𝑣𝐴))
3 nfv 1528 . . . . . . . . . 10 𝑥 𝑧𝑣
43sbf 1777 . . . . . . . . 9 ([𝑦 / 𝑥]𝑧𝑣𝑧𝑣)
54sbrbis 1961 . . . . . . . 8 ([𝑦 / 𝑥](𝑧𝑣𝜑) ↔ (𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑))
65sbalv 2005 . . . . . . 7 ([𝑦 / 𝑥]∀𝑧(𝑧𝑣𝜑) ↔ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑))
7 abeq2 2286 . . . . . . . 8 (𝑣 = {𝑧𝜑} ↔ ∀𝑧(𝑧𝑣𝜑))
87sbbii 1765 . . . . . . 7 ([𝑦 / 𝑥]𝑣 = {𝑧𝜑} ↔ [𝑦 / 𝑥]∀𝑧(𝑧𝑣𝜑))
9 abeq2 2286 . . . . . . 7 (𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ↔ ∀𝑧(𝑧𝑣 ↔ [𝑦 / 𝑥]𝜑))
106, 8, 93bitr4i 212 . . . . . 6 ([𝑦 / 𝑥]𝑣 = {𝑧𝜑} ↔ 𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑})
11 sbabel.1 . . . . . . . 8 𝑥𝐴
1211nfcri 2313 . . . . . . 7 𝑥 𝑣𝐴
1312sbf 1777 . . . . . 6 ([𝑦 / 𝑥]𝑣𝐴𝑣𝐴)
1410, 13anbi12i 460 . . . . 5 (([𝑦 / 𝑥]𝑣 = {𝑧𝜑} ∧ [𝑦 / 𝑥]𝑣𝐴) ↔ (𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∧ 𝑣𝐴))
152, 14bitri 184 . . . 4 ([𝑦 / 𝑥](𝑣 = {𝑧𝜑} ∧ 𝑣𝐴) ↔ (𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∧ 𝑣𝐴))
1615exbii 1605 . . 3 (∃𝑣[𝑦 / 𝑥](𝑣 = {𝑧𝜑} ∧ 𝑣𝐴) ↔ ∃𝑣(𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∧ 𝑣𝐴))
171, 16bitri 184 . 2 ([𝑦 / 𝑥]∃𝑣(𝑣 = {𝑧𝜑} ∧ 𝑣𝐴) ↔ ∃𝑣(𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∧ 𝑣𝐴))
18 df-clel 2173 . . 3 ({𝑧𝜑} ∈ 𝐴 ↔ ∃𝑣(𝑣 = {𝑧𝜑} ∧ 𝑣𝐴))
1918sbbii 1765 . 2 ([𝑦 / 𝑥]{𝑧𝜑} ∈ 𝐴 ↔ [𝑦 / 𝑥]∃𝑣(𝑣 = {𝑧𝜑} ∧ 𝑣𝐴))
20 df-clel 2173 . 2 ({𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴 ↔ ∃𝑣(𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∧ 𝑣𝐴))
2117, 19, 203bitr4i 212 1 ([𝑦 / 𝑥]{𝑧𝜑} ∈ 𝐴 ↔ {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1351   = wceq 1353  wex 1492  [wsb 1762  wcel 2148  {cab 2163  wnfc 2306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator