| Step | Hyp | Ref
 | Expression | 
| 1 |   | sbex 2023 | 
. . 3
⊢ ([𝑦 / 𝑥]∃𝑣(𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴) ↔ ∃𝑣[𝑦 / 𝑥](𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴)) | 
| 2 |   | sban 1974 | 
. . . . 5
⊢ ([𝑦 / 𝑥](𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴) ↔ ([𝑦 / 𝑥]𝑣 = {𝑧 ∣ 𝜑} ∧ [𝑦 / 𝑥]𝑣 ∈ 𝐴)) | 
| 3 |   | nfv 1542 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑧 ∈ 𝑣 | 
| 4 | 3 | sbf 1791 | 
. . . . . . . . 9
⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣) | 
| 5 | 4 | sbrbis 1980 | 
. . . . . . . 8
⊢ ([𝑦 / 𝑥](𝑧 ∈ 𝑣 ↔ 𝜑) ↔ (𝑧 ∈ 𝑣 ↔ [𝑦 / 𝑥]𝜑)) | 
| 6 | 5 | sbalv 2024 | 
. . . . . . 7
⊢ ([𝑦 / 𝑥]∀𝑧(𝑧 ∈ 𝑣 ↔ 𝜑) ↔ ∀𝑧(𝑧 ∈ 𝑣 ↔ [𝑦 / 𝑥]𝜑)) | 
| 7 |   | abeq2 2305 | 
. . . . . . . 8
⊢ (𝑣 = {𝑧 ∣ 𝜑} ↔ ∀𝑧(𝑧 ∈ 𝑣 ↔ 𝜑)) | 
| 8 | 7 | sbbii 1779 | 
. . . . . . 7
⊢ ([𝑦 / 𝑥]𝑣 = {𝑧 ∣ 𝜑} ↔ [𝑦 / 𝑥]∀𝑧(𝑧 ∈ 𝑣 ↔ 𝜑)) | 
| 9 |   | abeq2 2305 | 
. . . . . . 7
⊢ (𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ↔ ∀𝑧(𝑧 ∈ 𝑣 ↔ [𝑦 / 𝑥]𝜑)) | 
| 10 | 6, 8, 9 | 3bitr4i 212 | 
. . . . . 6
⊢ ([𝑦 / 𝑥]𝑣 = {𝑧 ∣ 𝜑} ↔ 𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑}) | 
| 11 |   | sbabel.1 | 
. . . . . . . 8
⊢
Ⅎ𝑥𝐴 | 
| 12 | 11 | nfcri 2333 | 
. . . . . . 7
⊢
Ⅎ𝑥 𝑣 ∈ 𝐴 | 
| 13 | 12 | sbf 1791 | 
. . . . . 6
⊢ ([𝑦 / 𝑥]𝑣 ∈ 𝐴 ↔ 𝑣 ∈ 𝐴) | 
| 14 | 10, 13 | anbi12i 460 | 
. . . . 5
⊢ (([𝑦 / 𝑥]𝑣 = {𝑧 ∣ 𝜑} ∧ [𝑦 / 𝑥]𝑣 ∈ 𝐴) ↔ (𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∧ 𝑣 ∈ 𝐴)) | 
| 15 | 2, 14 | bitri 184 | 
. . . 4
⊢ ([𝑦 / 𝑥](𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴) ↔ (𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∧ 𝑣 ∈ 𝐴)) | 
| 16 | 15 | exbii 1619 | 
. . 3
⊢
(∃𝑣[𝑦 / 𝑥](𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴) ↔ ∃𝑣(𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∧ 𝑣 ∈ 𝐴)) | 
| 17 | 1, 16 | bitri 184 | 
. 2
⊢ ([𝑦 / 𝑥]∃𝑣(𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴) ↔ ∃𝑣(𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∧ 𝑣 ∈ 𝐴)) | 
| 18 |   | df-clel 2192 | 
. . 3
⊢ ({𝑧 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑣(𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴)) | 
| 19 | 18 | sbbii 1779 | 
. 2
⊢ ([𝑦 / 𝑥]{𝑧 ∣ 𝜑} ∈ 𝐴 ↔ [𝑦 / 𝑥]∃𝑣(𝑣 = {𝑧 ∣ 𝜑} ∧ 𝑣 ∈ 𝐴)) | 
| 20 |   | df-clel 2192 | 
. 2
⊢ ({𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴 ↔ ∃𝑣(𝑣 = {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∧ 𝑣 ∈ 𝐴)) | 
| 21 | 17, 19, 20 | 3bitr4i 212 | 
1
⊢ ([𝑦 / 𝑥]{𝑧 ∣ 𝜑} ∈ 𝐴 ↔ {𝑧 ∣ [𝑦 / 𝑥]𝜑} ∈ 𝐴) |