| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sborv | GIF version | ||
| Description: Version of sbor 2005 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| sborv | ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb5 1934 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ∃𝑥(𝑥 = 𝑦 ∧ (𝜑 ∨ 𝜓))) | |
| 2 | andi 823 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝑥 = 𝑦 ∧ 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜓))) | |
| 3 | 2 | exbii 1651 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ (𝜑 ∨ 𝜓)) ↔ ∃𝑥((𝑥 = 𝑦 ∧ 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜓))) |
| 4 | 19.43 1674 | . . 3 ⊢ (∃𝑥((𝑥 = 𝑦 ∧ 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜓)) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ∨ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | |
| 5 | 1, 3, 4 | 3bitri 206 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ∨ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) |
| 6 | sb5 1934 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 7 | sb5 1934 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓)) | |
| 8 | 6, 7 | orbi12i 769 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ∨ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) |
| 9 | 5, 8 | bitr4i 187 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∨ wo 713 ∃wex 1538 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 |
| This theorem is referenced by: sbor 2005 |
| Copyright terms: Public domain | W3C validator |