ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sborv GIF version

Theorem sborv 1888
Description: Version of sbor 1952 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sborv ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sborv
StepHypRef Expression
1 sb5 1885 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ∃𝑥(𝑥 = 𝑦 ∧ (𝜑𝜓)))
2 andi 818 . . . 4 ((𝑥 = 𝑦 ∧ (𝜑𝜓)) ↔ ((𝑥 = 𝑦𝜑) ∨ (𝑥 = 𝑦𝜓)))
32exbii 1603 . . 3 (∃𝑥(𝑥 = 𝑦 ∧ (𝜑𝜓)) ↔ ∃𝑥((𝑥 = 𝑦𝜑) ∨ (𝑥 = 𝑦𝜓)))
4 19.43 1626 . . 3 (∃𝑥((𝑥 = 𝑦𝜑) ∨ (𝑥 = 𝑦𝜓)) ↔ (∃𝑥(𝑥 = 𝑦𝜑) ∨ ∃𝑥(𝑥 = 𝑦𝜓)))
51, 3, 43bitri 206 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ (∃𝑥(𝑥 = 𝑦𝜑) ∨ ∃𝑥(𝑥 = 𝑦𝜓)))
6 sb5 1885 . . 3 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
7 sb5 1885 . . 3 ([𝑦 / 𝑥]𝜓 ↔ ∃𝑥(𝑥 = 𝑦𝜓))
86, 7orbi12i 764 . 2 (([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓) ↔ (∃𝑥(𝑥 = 𝑦𝜑) ∨ ∃𝑥(𝑥 = 𝑦𝜓)))
95, 8bitr4i 187 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 708  wex 1490  [wsb 1760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532
This theorem depends on definitions:  df-bi 117  df-sb 1761
This theorem is referenced by:  sbor  1952
  Copyright terms: Public domain W3C validator