| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sborv | GIF version | ||
| Description: Version of sbor 1973 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 3-Feb-2018.) | 
| Ref | Expression | 
|---|---|
| sborv | ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sb5 1902 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ∃𝑥(𝑥 = 𝑦 ∧ (𝜑 ∨ 𝜓))) | |
| 2 | andi 819 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝑥 = 𝑦 ∧ 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜓))) | |
| 3 | 2 | exbii 1619 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ (𝜑 ∨ 𝜓)) ↔ ∃𝑥((𝑥 = 𝑦 ∧ 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜓))) | 
| 4 | 19.43 1642 | . . 3 ⊢ (∃𝑥((𝑥 = 𝑦 ∧ 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜓)) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ∨ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | |
| 5 | 1, 3, 4 | 3bitri 206 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ∨ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | 
| 6 | sb5 1902 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 7 | sb5 1902 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓)) | |
| 8 | 6, 7 | orbi12i 765 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ∨ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | 
| 9 | 5, 8 | bitr4i 187 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 ∨ wo 709 ∃wex 1506 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 | 
| This theorem is referenced by: sbor 1973 | 
| Copyright terms: Public domain | W3C validator |