Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sborv | GIF version |
Description: Version of sbor 1947 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 3-Feb-2018.) |
Ref | Expression |
---|---|
sborv | ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb5 1880 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ∃𝑥(𝑥 = 𝑦 ∧ (𝜑 ∨ 𝜓))) | |
2 | andi 813 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ (𝜑 ∨ 𝜓)) ↔ ((𝑥 = 𝑦 ∧ 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜓))) | |
3 | 2 | exbii 1598 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ (𝜑 ∨ 𝜓)) ↔ ∃𝑥((𝑥 = 𝑦 ∧ 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜓))) |
4 | 19.43 1621 | . . 3 ⊢ (∃𝑥((𝑥 = 𝑦 ∧ 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜓)) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ∨ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | |
5 | 1, 3, 4 | 3bitri 205 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ∨ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) |
6 | sb5 1880 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
7 | sb5 1880 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓)) | |
8 | 6, 7 | orbi12i 759 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ∨ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) |
9 | 5, 8 | bitr4i 186 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∨ wo 703 ∃wex 1485 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-sb 1756 |
This theorem is referenced by: sbor 1947 |
Copyright terms: Public domain | W3C validator |