| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqidd 2197 | 
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → (Scalar‘𝑊) = (Scalar‘𝑊)) | 
| 2 |   | eqidd 2197 | 
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → (Base‘(Scalar‘𝑊)) =
(Base‘(Scalar‘𝑊))) | 
| 3 |   | eqidd 2197 | 
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → (Base‘𝑊) = (Base‘𝑊)) | 
| 4 |   | eqidd 2197 | 
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → (+g‘𝑊) = (+g‘𝑊)) | 
| 5 |   | eqidd 2197 | 
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊)) | 
| 6 |   | lssintcl.s | 
. . 3
⊢ 𝑆 = (LSubSp‘𝑊) | 
| 7 | 6 | a1i 9 | 
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → 𝑆 = (LSubSp‘𝑊)) | 
| 8 |   | intssuni2m 3898 | 
. . . 4
⊢ ((𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → ∩ 𝐴 ⊆ ∪ 𝑆) | 
| 9 | 8 | 3adant1 1017 | 
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → ∩ 𝐴 ⊆ ∪ 𝑆) | 
| 10 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(Base‘𝑊) =
(Base‘𝑊) | 
| 11 | 10, 6 | lssssg 13916 | 
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑆) → 𝑦 ⊆ (Base‘𝑊)) | 
| 12 |   | velpw 3612 | 
. . . . . . . 8
⊢ (𝑦 ∈ 𝒫
(Base‘𝑊) ↔ 𝑦 ⊆ (Base‘𝑊)) | 
| 13 | 11, 12 | sylibr 134 | 
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝒫 (Base‘𝑊)) | 
| 14 | 13 | ex 115 | 
. . . . . 6
⊢ (𝑊 ∈ LMod → (𝑦 ∈ 𝑆 → 𝑦 ∈ 𝒫 (Base‘𝑊))) | 
| 15 | 14 | ssrdv 3189 | 
. . . . 5
⊢ (𝑊 ∈ LMod → 𝑆 ⊆ 𝒫
(Base‘𝑊)) | 
| 16 |   | sspwuni 4001 | 
. . . . 5
⊢ (𝑆 ⊆ 𝒫
(Base‘𝑊) ↔ ∪ 𝑆
⊆ (Base‘𝑊)) | 
| 17 | 15, 16 | sylib 122 | 
. . . 4
⊢ (𝑊 ∈ LMod → ∪ 𝑆
⊆ (Base‘𝑊)) | 
| 18 | 17 | 3ad2ant1 1020 | 
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → ∪ 𝑆 ⊆ (Base‘𝑊)) | 
| 19 | 9, 18 | sstrd 3193 | 
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → ∩ 𝐴 ⊆ (Base‘𝑊)) | 
| 20 |   | simpl1 1002 | 
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑊 ∈ LMod) | 
| 21 |   | simp2 1000 | 
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → 𝐴 ⊆ 𝑆) | 
| 22 | 21 | sselda 3183 | 
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝑆) | 
| 23 |   | eqid 2196 | 
. . . . . . 7
⊢
(0g‘𝑊) = (0g‘𝑊) | 
| 24 | 23, 6 | lss0cl 13925 | 
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑆) → (0g‘𝑊) ∈ 𝑦) | 
| 25 | 20, 22, 24 | syl2anc 411 | 
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (0g‘𝑊) ∈ 𝑦) | 
| 26 | 25 | ralrimiva 2570 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 (0g‘𝑊) ∈ 𝑦) | 
| 27 | 10, 23 | lmod0vcl 13873 | 
. . . . . 6
⊢ (𝑊 ∈ LMod →
(0g‘𝑊)
∈ (Base‘𝑊)) | 
| 28 |   | elintg 3882 | 
. . . . . 6
⊢
((0g‘𝑊) ∈ (Base‘𝑊) → ((0g‘𝑊) ∈ ∩ 𝐴
↔ ∀𝑦 ∈
𝐴
(0g‘𝑊)
∈ 𝑦)) | 
| 29 | 27, 28 | syl 14 | 
. . . . 5
⊢ (𝑊 ∈ LMod →
((0g‘𝑊)
∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 (0g‘𝑊) ∈ 𝑦)) | 
| 30 | 29 | 3ad2ant1 1020 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → ((0g‘𝑊) ∈ ∩ 𝐴
↔ ∀𝑦 ∈
𝐴
(0g‘𝑊)
∈ 𝑦)) | 
| 31 | 26, 30 | mpbird 167 | 
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → (0g‘𝑊) ∈ ∩ 𝐴) | 
| 32 |   | elex2 2779 | 
. . 3
⊢
((0g‘𝑊) ∈ ∩ 𝐴 → ∃𝑤 𝑤 ∈ ∩ 𝐴) | 
| 33 | 31, 32 | syl 14 | 
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → ∃𝑤 𝑤 ∈ ∩ 𝐴) | 
| 34 | 20 | adantlr 477 | 
. . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑊 ∈ LMod) | 
| 35 | 22 | adantlr 477 | 
. . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝑆) | 
| 36 |   | simplr1 1041 | 
. . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ (Base‘(Scalar‘𝑊))) | 
| 37 |   | simplr2 1042 | 
. . . . . 6
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑎 ∈ ∩ 𝐴) | 
| 38 |   | simpr 110 | 
. . . . . 6
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | 
| 39 |   | elinti 3883 | 
. . . . . 6
⊢ (𝑎 ∈ ∩ 𝐴
→ (𝑦 ∈ 𝐴 → 𝑎 ∈ 𝑦)) | 
| 40 | 37, 38, 39 | sylc 62 | 
. . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑎 ∈ 𝑦) | 
| 41 |   | simplr3 1043 | 
. . . . . 6
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑏 ∈ ∩ 𝐴) | 
| 42 |   | elinti 3883 | 
. . . . . 6
⊢ (𝑏 ∈ ∩ 𝐴
→ (𝑦 ∈ 𝐴 → 𝑏 ∈ 𝑦)) | 
| 43 | 41, 38, 42 | sylc 62 | 
. . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑏 ∈ 𝑦) | 
| 44 |   | eqid 2196 | 
. . . . . 6
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) | 
| 45 |   | eqid 2196 | 
. . . . . 6
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | 
| 46 |   | eqid 2196 | 
. . . . . 6
⊢
(+g‘𝑊) = (+g‘𝑊) | 
| 47 |   | eqid 2196 | 
. . . . . 6
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) | 
| 48 | 44, 45, 46, 47, 6 | lssclg 13920 | 
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑆 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑦 ∧ 𝑏 ∈ 𝑦)) → ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑦) | 
| 49 | 34, 35, 36, 40, 43, 48 | syl113anc 1261 | 
. . . 4
⊢ ((((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) ∧ 𝑦 ∈ 𝐴) → ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑦) | 
| 50 | 49 | ralrimiva 2570 | 
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) → ∀𝑦 ∈ 𝐴 ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑦) | 
| 51 |   | vex 2766 | 
. . . . . . . . 9
⊢ 𝑥 ∈ V | 
| 52 | 51 | a1i 9 | 
. . . . . . . 8
⊢ (𝑊 ∈ LMod → 𝑥 ∈ V) | 
| 53 |   | vscaslid 12840 | 
. . . . . . . . 9
⊢ (
·𝑠 = Slot (
·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) | 
| 54 | 53 | slotex 12705 | 
. . . . . . . 8
⊢ (𝑊 ∈ LMod → (
·𝑠 ‘𝑊) ∈ V) | 
| 55 |   | vex 2766 | 
. . . . . . . . 9
⊢ 𝑎 ∈ V | 
| 56 | 55 | a1i 9 | 
. . . . . . . 8
⊢ (𝑊 ∈ LMod → 𝑎 ∈ V) | 
| 57 |   | ovexg 5956 | 
. . . . . . . 8
⊢ ((𝑥 ∈ V ∧ (
·𝑠 ‘𝑊) ∈ V ∧ 𝑎 ∈ V) → (𝑥( ·𝑠
‘𝑊)𝑎) ∈ V) | 
| 58 | 52, 54, 56, 57 | syl3anc 1249 | 
. . . . . . 7
⊢ (𝑊 ∈ LMod → (𝑥(
·𝑠 ‘𝑊)𝑎) ∈ V) | 
| 59 |   | plusgslid 12790 | 
. . . . . . . 8
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) | 
| 60 | 59 | slotex 12705 | 
. . . . . . 7
⊢ (𝑊 ∈ LMod →
(+g‘𝑊)
∈ V) | 
| 61 |   | vex 2766 | 
. . . . . . . 8
⊢ 𝑏 ∈ V | 
| 62 | 61 | a1i 9 | 
. . . . . . 7
⊢ (𝑊 ∈ LMod → 𝑏 ∈ V) | 
| 63 |   | ovexg 5956 | 
. . . . . . 7
⊢ (((𝑥(
·𝑠 ‘𝑊)𝑎) ∈ V ∧ (+g‘𝑊) ∈ V ∧ 𝑏 ∈ V) → ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ V) | 
| 64 | 58, 60, 62, 63 | syl3anc 1249 | 
. . . . . 6
⊢ (𝑊 ∈ LMod → ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ V) | 
| 65 |   | elintg 3882 | 
. . . . . 6
⊢ (((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ V → (((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑦)) | 
| 66 | 64, 65 | syl 14 | 
. . . . 5
⊢ (𝑊 ∈ LMod → (((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑦)) | 
| 67 | 66 | 3ad2ant1 1020 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → (((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑦)) | 
| 68 | 67 | adantr 276 | 
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) → (((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑦)) | 
| 69 | 50, 68 | mpbird 167 | 
. 2
⊢ (((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ ∩ 𝐴 ∧ 𝑏 ∈ ∩ 𝐴)) → ((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ ∩ 𝐴) | 
| 70 |   | simp1 999 | 
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → 𝑊 ∈ LMod) | 
| 71 | 1, 2, 3, 4, 5, 7, 19, 33, 69, 70 | islssmd 13915 | 
1
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ ∃𝑤 𝑤 ∈ 𝐴) → ∩ 𝐴 ∈ 𝑆) |