ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssintclm GIF version

Theorem lssintclm 14146
Description: The intersection of an inhabited set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lssintcl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssintclm ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴𝑆)
Distinct variable groups:   𝑤,𝐴   𝑤,𝑊
Allowed substitution hint:   𝑆(𝑤)

Proof of Theorem lssintclm
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2206 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2206 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 eqidd 2206 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (Base‘𝑊) = (Base‘𝑊))
4 eqidd 2206 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (+g𝑊) = (+g𝑊))
5 eqidd 2206 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → ( ·𝑠𝑊) = ( ·𝑠𝑊))
6 lssintcl.s . . 3 𝑆 = (LSubSp‘𝑊)
76a1i 9 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝑆 = (LSubSp‘𝑊))
8 intssuni2m 3909 . . . 4 ((𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴 𝑆)
983adant1 1018 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴 𝑆)
10 eqid 2205 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
1110, 6lssssg 14122 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑦𝑆) → 𝑦 ⊆ (Base‘𝑊))
12 velpw 3623 . . . . . . . 8 (𝑦 ∈ 𝒫 (Base‘𝑊) ↔ 𝑦 ⊆ (Base‘𝑊))
1311, 12sylibr 134 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑦𝑆) → 𝑦 ∈ 𝒫 (Base‘𝑊))
1413ex 115 . . . . . 6 (𝑊 ∈ LMod → (𝑦𝑆𝑦 ∈ 𝒫 (Base‘𝑊)))
1514ssrdv 3199 . . . . 5 (𝑊 ∈ LMod → 𝑆 ⊆ 𝒫 (Base‘𝑊))
16 sspwuni 4012 . . . . 5 (𝑆 ⊆ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊))
1715, 16sylib 122 . . . 4 (𝑊 ∈ LMod → 𝑆 ⊆ (Base‘𝑊))
18173ad2ant1 1021 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝑆 ⊆ (Base‘𝑊))
199, 18sstrd 3203 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴 ⊆ (Base‘𝑊))
20 simpl1 1003 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ 𝑦𝐴) → 𝑊 ∈ LMod)
21 simp2 1001 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴𝑆)
2221sselda 3193 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ 𝑦𝐴) → 𝑦𝑆)
23 eqid 2205 . . . . . . 7 (0g𝑊) = (0g𝑊)
2423, 6lss0cl 14131 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑦𝑆) → (0g𝑊) ∈ 𝑦)
2520, 22, 24syl2anc 411 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ 𝑦𝐴) → (0g𝑊) ∈ 𝑦)
2625ralrimiva 2579 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → ∀𝑦𝐴 (0g𝑊) ∈ 𝑦)
2710, 23lmod0vcl 14079 . . . . . 6 (𝑊 ∈ LMod → (0g𝑊) ∈ (Base‘𝑊))
28 elintg 3893 . . . . . 6 ((0g𝑊) ∈ (Base‘𝑊) → ((0g𝑊) ∈ 𝐴 ↔ ∀𝑦𝐴 (0g𝑊) ∈ 𝑦))
2927, 28syl 14 . . . . 5 (𝑊 ∈ LMod → ((0g𝑊) ∈ 𝐴 ↔ ∀𝑦𝐴 (0g𝑊) ∈ 𝑦))
30293ad2ant1 1021 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → ((0g𝑊) ∈ 𝐴 ↔ ∀𝑦𝐴 (0g𝑊) ∈ 𝑦))
3126, 30mpbird 167 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (0g𝑊) ∈ 𝐴)
32 elex2 2788 . . 3 ((0g𝑊) ∈ 𝐴 → ∃𝑤 𝑤 𝐴)
3331, 32syl 14 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → ∃𝑤 𝑤 𝐴)
3420adantlr 477 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑊 ∈ LMod)
3522adantlr 477 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝑆)
36 simplr1 1042 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
37 simplr2 1043 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎 𝐴)
38 simpr 110 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝐴)
39 elinti 3894 . . . . . 6 (𝑎 𝐴 → (𝑦𝐴𝑎𝑦))
4037, 38, 39sylc 62 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎𝑦)
41 simplr3 1044 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏 𝐴)
42 elinti 3894 . . . . . 6 (𝑏 𝐴 → (𝑦𝐴𝑏𝑦))
4341, 38, 42sylc 62 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏𝑦)
44 eqid 2205 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
45 eqid 2205 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
46 eqid 2205 . . . . . 6 (+g𝑊) = (+g𝑊)
47 eqid 2205 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4844, 45, 46, 47, 6lssclg 14126 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑦𝑆 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑦𝑏𝑦)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4934, 35, 36, 40, 43, 48syl113anc 1262 . . . 4 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
5049ralrimiva 2579 . . 3 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
51 vex 2775 . . . . . . . . 9 𝑥 ∈ V
5251a1i 9 . . . . . . . 8 (𝑊 ∈ LMod → 𝑥 ∈ V)
53 vscaslid 12995 . . . . . . . . 9 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
5453slotex 12859 . . . . . . . 8 (𝑊 ∈ LMod → ( ·𝑠𝑊) ∈ V)
55 vex 2775 . . . . . . . . 9 𝑎 ∈ V
5655a1i 9 . . . . . . . 8 (𝑊 ∈ LMod → 𝑎 ∈ V)
57 ovexg 5978 . . . . . . . 8 ((𝑥 ∈ V ∧ ( ·𝑠𝑊) ∈ V ∧ 𝑎 ∈ V) → (𝑥( ·𝑠𝑊)𝑎) ∈ V)
5852, 54, 56, 57syl3anc 1250 . . . . . . 7 (𝑊 ∈ LMod → (𝑥( ·𝑠𝑊)𝑎) ∈ V)
59 plusgslid 12944 . . . . . . . 8 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
6059slotex 12859 . . . . . . 7 (𝑊 ∈ LMod → (+g𝑊) ∈ V)
61 vex 2775 . . . . . . . 8 𝑏 ∈ V
6261a1i 9 . . . . . . 7 (𝑊 ∈ LMod → 𝑏 ∈ V)
63 ovexg 5978 . . . . . . 7 (((𝑥( ·𝑠𝑊)𝑎) ∈ V ∧ (+g𝑊) ∈ V ∧ 𝑏 ∈ V) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V)
6458, 60, 62, 63syl3anc 1250 . . . . . 6 (𝑊 ∈ LMod → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V)
65 elintg 3893 . . . . . 6 (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦))
6664, 65syl 14 . . . . 5 (𝑊 ∈ LMod → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦))
67663ad2ant1 1021 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦))
6867adantr 276 . . 3 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦))
6950, 68mpbird 167 . 2 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴)
70 simp1 1000 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝑊 ∈ LMod)
711, 2, 3, 4, 5, 7, 19, 33, 69, 70islssmd 14121 1 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wex 1515  wcel 2176  wral 2484  Vcvv 2772  wss 3166  𝒫 cpw 3616   cuni 3850   cint 3885  cfv 5271  (class class class)co 5944  Basecbs 12832  +gcplusg 12909  Scalarcsca 12912   ·𝑠 cvsca 12913  0gc0g 13088  LModclmod 14049  LSubSpclss 14114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-sbg 13337  df-mgp 13683  df-ur 13722  df-ring 13760  df-lmod 14051  df-lssm 14115
This theorem is referenced by:  lssincl  14147  lspf  14151
  Copyright terms: Public domain W3C validator