ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssintclm GIF version

Theorem lssintclm 13883
Description: The intersection of an inhabited set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lssintcl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssintclm ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴𝑆)
Distinct variable groups:   𝑤,𝐴   𝑤,𝑊
Allowed substitution hint:   𝑆(𝑤)

Proof of Theorem lssintclm
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2194 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2194 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 eqidd 2194 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (Base‘𝑊) = (Base‘𝑊))
4 eqidd 2194 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (+g𝑊) = (+g𝑊))
5 eqidd 2194 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → ( ·𝑠𝑊) = ( ·𝑠𝑊))
6 lssintcl.s . . 3 𝑆 = (LSubSp‘𝑊)
76a1i 9 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝑆 = (LSubSp‘𝑊))
8 intssuni2m 3895 . . . 4 ((𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴 𝑆)
983adant1 1017 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴 𝑆)
10 eqid 2193 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
1110, 6lssssg 13859 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑦𝑆) → 𝑦 ⊆ (Base‘𝑊))
12 velpw 3609 . . . . . . . 8 (𝑦 ∈ 𝒫 (Base‘𝑊) ↔ 𝑦 ⊆ (Base‘𝑊))
1311, 12sylibr 134 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑦𝑆) → 𝑦 ∈ 𝒫 (Base‘𝑊))
1413ex 115 . . . . . 6 (𝑊 ∈ LMod → (𝑦𝑆𝑦 ∈ 𝒫 (Base‘𝑊)))
1514ssrdv 3186 . . . . 5 (𝑊 ∈ LMod → 𝑆 ⊆ 𝒫 (Base‘𝑊))
16 sspwuni 3998 . . . . 5 (𝑆 ⊆ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊))
1715, 16sylib 122 . . . 4 (𝑊 ∈ LMod → 𝑆 ⊆ (Base‘𝑊))
18173ad2ant1 1020 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝑆 ⊆ (Base‘𝑊))
199, 18sstrd 3190 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴 ⊆ (Base‘𝑊))
20 simpl1 1002 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ 𝑦𝐴) → 𝑊 ∈ LMod)
21 simp2 1000 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴𝑆)
2221sselda 3180 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ 𝑦𝐴) → 𝑦𝑆)
23 eqid 2193 . . . . . . 7 (0g𝑊) = (0g𝑊)
2423, 6lss0cl 13868 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑦𝑆) → (0g𝑊) ∈ 𝑦)
2520, 22, 24syl2anc 411 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ 𝑦𝐴) → (0g𝑊) ∈ 𝑦)
2625ralrimiva 2567 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → ∀𝑦𝐴 (0g𝑊) ∈ 𝑦)
2710, 23lmod0vcl 13816 . . . . . 6 (𝑊 ∈ LMod → (0g𝑊) ∈ (Base‘𝑊))
28 elintg 3879 . . . . . 6 ((0g𝑊) ∈ (Base‘𝑊) → ((0g𝑊) ∈ 𝐴 ↔ ∀𝑦𝐴 (0g𝑊) ∈ 𝑦))
2927, 28syl 14 . . . . 5 (𝑊 ∈ LMod → ((0g𝑊) ∈ 𝐴 ↔ ∀𝑦𝐴 (0g𝑊) ∈ 𝑦))
30293ad2ant1 1020 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → ((0g𝑊) ∈ 𝐴 ↔ ∀𝑦𝐴 (0g𝑊) ∈ 𝑦))
3126, 30mpbird 167 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (0g𝑊) ∈ 𝐴)
32 elex2 2776 . . 3 ((0g𝑊) ∈ 𝐴 → ∃𝑤 𝑤 𝐴)
3331, 32syl 14 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → ∃𝑤 𝑤 𝐴)
3420adantlr 477 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑊 ∈ LMod)
3522adantlr 477 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝑆)
36 simplr1 1041 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
37 simplr2 1042 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎 𝐴)
38 simpr 110 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝐴)
39 elinti 3880 . . . . . 6 (𝑎 𝐴 → (𝑦𝐴𝑎𝑦))
4037, 38, 39sylc 62 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎𝑦)
41 simplr3 1043 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏 𝐴)
42 elinti 3880 . . . . . 6 (𝑏 𝐴 → (𝑦𝐴𝑏𝑦))
4341, 38, 42sylc 62 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏𝑦)
44 eqid 2193 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
45 eqid 2193 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
46 eqid 2193 . . . . . 6 (+g𝑊) = (+g𝑊)
47 eqid 2193 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4844, 45, 46, 47, 6lssclg 13863 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑦𝑆 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑦𝑏𝑦)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4934, 35, 36, 40, 43, 48syl113anc 1261 . . . 4 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
5049ralrimiva 2567 . . 3 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
51 vex 2763 . . . . . . . . 9 𝑥 ∈ V
5251a1i 9 . . . . . . . 8 (𝑊 ∈ LMod → 𝑥 ∈ V)
53 vscaslid 12783 . . . . . . . . 9 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
5453slotex 12648 . . . . . . . 8 (𝑊 ∈ LMod → ( ·𝑠𝑊) ∈ V)
55 vex 2763 . . . . . . . . 9 𝑎 ∈ V
5655a1i 9 . . . . . . . 8 (𝑊 ∈ LMod → 𝑎 ∈ V)
57 ovexg 5953 . . . . . . . 8 ((𝑥 ∈ V ∧ ( ·𝑠𝑊) ∈ V ∧ 𝑎 ∈ V) → (𝑥( ·𝑠𝑊)𝑎) ∈ V)
5852, 54, 56, 57syl3anc 1249 . . . . . . 7 (𝑊 ∈ LMod → (𝑥( ·𝑠𝑊)𝑎) ∈ V)
59 plusgslid 12733 . . . . . . . 8 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
6059slotex 12648 . . . . . . 7 (𝑊 ∈ LMod → (+g𝑊) ∈ V)
61 vex 2763 . . . . . . . 8 𝑏 ∈ V
6261a1i 9 . . . . . . 7 (𝑊 ∈ LMod → 𝑏 ∈ V)
63 ovexg 5953 . . . . . . 7 (((𝑥( ·𝑠𝑊)𝑎) ∈ V ∧ (+g𝑊) ∈ V ∧ 𝑏 ∈ V) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V)
6458, 60, 62, 63syl3anc 1249 . . . . . 6 (𝑊 ∈ LMod → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V)
65 elintg 3879 . . . . . 6 (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦))
6664, 65syl 14 . . . . 5 (𝑊 ∈ LMod → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦))
67663ad2ant1 1020 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦))
6867adantr 276 . . 3 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦))
6950, 68mpbird 167 . 2 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴)
70 simp1 999 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝑊 ∈ LMod)
711, 2, 3, 4, 5, 7, 19, 33, 69, 70islssmd 13858 1 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1503  wcel 2164  wral 2472  Vcvv 2760  wss 3154  𝒫 cpw 3602   cuni 3836   cint 3871  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  Scalarcsca 12701   ·𝑠 cvsca 12702  0gc0g 12870  LModclmod 13786  LSubSpclss 13851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-mgp 13420  df-ur 13459  df-ring 13497  df-lmod 13788  df-lssm 13852
This theorem is referenced by:  lssincl  13884  lspf  13888
  Copyright terms: Public domain W3C validator