ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssintclm GIF version

Theorem lssintclm 13573
Description: The intersection of an inhabited set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lssintcl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssintclm ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴𝑆)
Distinct variable groups:   𝑤,𝐴   𝑤,𝑊
Allowed substitution hint:   𝑆(𝑤)

Proof of Theorem lssintclm
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2188 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2188 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 eqidd 2188 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (Base‘𝑊) = (Base‘𝑊))
4 eqidd 2188 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (+g𝑊) = (+g𝑊))
5 eqidd 2188 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → ( ·𝑠𝑊) = ( ·𝑠𝑊))
6 lssintcl.s . . 3 𝑆 = (LSubSp‘𝑊)
76a1i 9 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝑆 = (LSubSp‘𝑊))
8 intssuni2m 3880 . . . 4 ((𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴 𝑆)
983adant1 1016 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴 𝑆)
10 eqid 2187 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
1110, 6lssssg 13549 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑦𝑆) → 𝑦 ⊆ (Base‘𝑊))
12 velpw 3594 . . . . . . . 8 (𝑦 ∈ 𝒫 (Base‘𝑊) ↔ 𝑦 ⊆ (Base‘𝑊))
1311, 12sylibr 134 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑦𝑆) → 𝑦 ∈ 𝒫 (Base‘𝑊))
1413ex 115 . . . . . 6 (𝑊 ∈ LMod → (𝑦𝑆𝑦 ∈ 𝒫 (Base‘𝑊)))
1514ssrdv 3173 . . . . 5 (𝑊 ∈ LMod → 𝑆 ⊆ 𝒫 (Base‘𝑊))
16 sspwuni 3983 . . . . 5 (𝑆 ⊆ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊))
1715, 16sylib 122 . . . 4 (𝑊 ∈ LMod → 𝑆 ⊆ (Base‘𝑊))
18173ad2ant1 1019 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝑆 ⊆ (Base‘𝑊))
199, 18sstrd 3177 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴 ⊆ (Base‘𝑊))
20 simpl1 1001 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ 𝑦𝐴) → 𝑊 ∈ LMod)
21 simp2 999 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴𝑆)
2221sselda 3167 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ 𝑦𝐴) → 𝑦𝑆)
23 eqid 2187 . . . . . . 7 (0g𝑊) = (0g𝑊)
2423, 6lss0cl 13558 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑦𝑆) → (0g𝑊) ∈ 𝑦)
2520, 22, 24syl2anc 411 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ 𝑦𝐴) → (0g𝑊) ∈ 𝑦)
2625ralrimiva 2560 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → ∀𝑦𝐴 (0g𝑊) ∈ 𝑦)
2710, 23lmod0vcl 13506 . . . . . 6 (𝑊 ∈ LMod → (0g𝑊) ∈ (Base‘𝑊))
28 elintg 3864 . . . . . 6 ((0g𝑊) ∈ (Base‘𝑊) → ((0g𝑊) ∈ 𝐴 ↔ ∀𝑦𝐴 (0g𝑊) ∈ 𝑦))
2927, 28syl 14 . . . . 5 (𝑊 ∈ LMod → ((0g𝑊) ∈ 𝐴 ↔ ∀𝑦𝐴 (0g𝑊) ∈ 𝑦))
30293ad2ant1 1019 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → ((0g𝑊) ∈ 𝐴 ↔ ∀𝑦𝐴 (0g𝑊) ∈ 𝑦))
3126, 30mpbird 167 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (0g𝑊) ∈ 𝐴)
32 elex2 2765 . . 3 ((0g𝑊) ∈ 𝐴 → ∃𝑤 𝑤 𝐴)
3331, 32syl 14 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → ∃𝑤 𝑤 𝐴)
3420adantlr 477 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑊 ∈ LMod)
3522adantlr 477 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝑆)
36 simplr1 1040 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
37 simplr2 1041 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎 𝐴)
38 simpr 110 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑦𝐴)
39 elinti 3865 . . . . . 6 (𝑎 𝐴 → (𝑦𝐴𝑎𝑦))
4037, 38, 39sylc 62 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑎𝑦)
41 simplr3 1042 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏 𝐴)
42 elinti 3865 . . . . . 6 (𝑏 𝐴 → (𝑦𝐴𝑏𝑦))
4341, 38, 42sylc 62 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → 𝑏𝑦)
44 eqid 2187 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
45 eqid 2187 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
46 eqid 2187 . . . . . 6 (+g𝑊) = (+g𝑊)
47 eqid 2187 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4844, 45, 46, 47, 6lssclg 13553 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑦𝑆 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑦𝑏𝑦)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
4934, 35, 36, 40, 43, 48syl113anc 1260 . . . 4 ((((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) ∧ 𝑦𝐴) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
5049ralrimiva 2560 . . 3 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦)
51 vex 2752 . . . . . . . . 9 𝑥 ∈ V
5251a1i 9 . . . . . . . 8 (𝑊 ∈ LMod → 𝑥 ∈ V)
53 vscaslid 12636 . . . . . . . . 9 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
5453slotex 12503 . . . . . . . 8 (𝑊 ∈ LMod → ( ·𝑠𝑊) ∈ V)
55 vex 2752 . . . . . . . . 9 𝑎 ∈ V
5655a1i 9 . . . . . . . 8 (𝑊 ∈ LMod → 𝑎 ∈ V)
57 ovexg 5922 . . . . . . . 8 ((𝑥 ∈ V ∧ ( ·𝑠𝑊) ∈ V ∧ 𝑎 ∈ V) → (𝑥( ·𝑠𝑊)𝑎) ∈ V)
5852, 54, 56, 57syl3anc 1248 . . . . . . 7 (𝑊 ∈ LMod → (𝑥( ·𝑠𝑊)𝑎) ∈ V)
59 plusgslid 12586 . . . . . . . 8 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
6059slotex 12503 . . . . . . 7 (𝑊 ∈ LMod → (+g𝑊) ∈ V)
61 vex 2752 . . . . . . . 8 𝑏 ∈ V
6261a1i 9 . . . . . . 7 (𝑊 ∈ LMod → 𝑏 ∈ V)
63 ovexg 5922 . . . . . . 7 (((𝑥( ·𝑠𝑊)𝑎) ∈ V ∧ (+g𝑊) ∈ V ∧ 𝑏 ∈ V) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V)
6458, 60, 62, 63syl3anc 1248 . . . . . 6 (𝑊 ∈ LMod → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V)
65 elintg 3864 . . . . . 6 (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦))
6664, 65syl 14 . . . . 5 (𝑊 ∈ LMod → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦))
67663ad2ant1 1019 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦))
6867adantr 276 . . 3 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴 ↔ ∀𝑦𝐴 ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑦))
6950, 68mpbird 167 . 2 (((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 𝐴𝑏 𝐴)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝐴)
70 simp1 998 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝑊 ∈ LMod)
711, 2, 3, 4, 5, 7, 19, 33, 69, 70islssmd 13548 1 ((𝑊 ∈ LMod ∧ 𝐴𝑆 ∧ ∃𝑤 𝑤𝐴) → 𝐴𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 979   = wceq 1363  wex 1502  wcel 2158  wral 2465  Vcvv 2749  wss 3141  𝒫 cpw 3587   cuni 3821   cint 3856  cfv 5228  (class class class)co 5888  Basecbs 12476  +gcplusg 12551  Scalarcsca 12554   ·𝑠 cvsca 12555  0gc0g 12723  LModclmod 13476  LSubSpclss 13541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-5 8995  df-6 8996  df-ndx 12479  df-slot 12480  df-base 12482  df-sets 12483  df-plusg 12564  df-mulr 12565  df-sca 12567  df-vsca 12568  df-0g 12725  df-mgm 12794  df-sgrp 12827  df-mnd 12840  df-grp 12902  df-minusg 12903  df-sbg 12904  df-mgp 13173  df-ur 13212  df-ring 13250  df-lmod 13478  df-lssm 13542
This theorem is referenced by:  lssincl  13574  lspf  13578
  Copyright terms: Public domain W3C validator