Step | Hyp | Ref
| Expression |
1 | | eqidd 2188 |
. 2
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β (Scalarβπ) = (Scalarβπ)) |
2 | | eqidd 2188 |
. 2
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β (Baseβ(Scalarβπ)) =
(Baseβ(Scalarβπ))) |
3 | | eqidd 2188 |
. 2
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β (Baseβπ) = (Baseβπ)) |
4 | | eqidd 2188 |
. 2
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β (+gβπ) = (+gβπ)) |
5 | | eqidd 2188 |
. 2
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β (
Β·π βπ) = ( Β·π
βπ)) |
6 | | lssintcl.s |
. . 3
β’ π = (LSubSpβπ) |
7 | 6 | a1i 9 |
. 2
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β π = (LSubSpβπ)) |
8 | | intssuni2m 3880 |
. . . 4
β’ ((π΄ β π β§ βπ€ π€ β π΄) β β© π΄ β βͺ π) |
9 | 8 | 3adant1 1016 |
. . 3
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β β© π΄ β βͺ π) |
10 | | eqid 2187 |
. . . . . . . . 9
β’
(Baseβπ) =
(Baseβπ) |
11 | 10, 6 | lssssg 13544 |
. . . . . . . 8
β’ ((π β LMod β§ π¦ β π) β π¦ β (Baseβπ)) |
12 | | velpw 3594 |
. . . . . . . 8
β’ (π¦ β π«
(Baseβπ) β π¦ β (Baseβπ)) |
13 | 11, 12 | sylibr 134 |
. . . . . . 7
β’ ((π β LMod β§ π¦ β π) β π¦ β π« (Baseβπ)) |
14 | 13 | ex 115 |
. . . . . 6
β’ (π β LMod β (π¦ β π β π¦ β π« (Baseβπ))) |
15 | 14 | ssrdv 3173 |
. . . . 5
β’ (π β LMod β π β π«
(Baseβπ)) |
16 | | sspwuni 3983 |
. . . . 5
β’ (π β π«
(Baseβπ) β βͺ π
β (Baseβπ)) |
17 | 15, 16 | sylib 122 |
. . . 4
β’ (π β LMod β βͺ π
β (Baseβπ)) |
18 | 17 | 3ad2ant1 1019 |
. . 3
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β βͺ π β (Baseβπ)) |
19 | 9, 18 | sstrd 3177 |
. 2
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β β© π΄ β (Baseβπ)) |
20 | | simpl1 1001 |
. . . . . 6
β’ (((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β§ π¦ β π΄) β π β LMod) |
21 | | simp2 999 |
. . . . . . 7
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β π΄ β π) |
22 | 21 | sselda 3167 |
. . . . . 6
β’ (((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β§ π¦ β π΄) β π¦ β π) |
23 | | eqid 2187 |
. . . . . . 7
β’
(0gβπ) = (0gβπ) |
24 | 23, 6 | lss0cl 13553 |
. . . . . 6
β’ ((π β LMod β§ π¦ β π) β (0gβπ) β π¦) |
25 | 20, 22, 24 | syl2anc 411 |
. . . . 5
β’ (((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β§ π¦ β π΄) β (0gβπ) β π¦) |
26 | 25 | ralrimiva 2560 |
. . . 4
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β βπ¦ β π΄ (0gβπ) β π¦) |
27 | 10, 23 | lmod0vcl 13501 |
. . . . . 6
β’ (π β LMod β
(0gβπ)
β (Baseβπ)) |
28 | | elintg 3864 |
. . . . . 6
β’
((0gβπ) β (Baseβπ) β ((0gβπ) β β© π΄
β βπ¦ β
π΄
(0gβπ)
β π¦)) |
29 | 27, 28 | syl 14 |
. . . . 5
β’ (π β LMod β
((0gβπ)
β β© π΄ β βπ¦ β π΄ (0gβπ) β π¦)) |
30 | 29 | 3ad2ant1 1019 |
. . . 4
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β ((0gβπ) β β© π΄
β βπ¦ β
π΄
(0gβπ)
β π¦)) |
31 | 26, 30 | mpbird 167 |
. . 3
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β (0gβπ) β β© π΄) |
32 | | elex2 2765 |
. . 3
β’
((0gβπ) β β© π΄ β βπ€ π€ β β© π΄) |
33 | 31, 32 | syl 14 |
. 2
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β βπ€ π€ β β© π΄) |
34 | 20 | adantlr 477 |
. . . . 5
β’ ((((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β β© π΄ β§ π β β© π΄)) β§ π¦ β π΄) β π β LMod) |
35 | 22 | adantlr 477 |
. . . . 5
β’ ((((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β β© π΄ β§ π β β© π΄)) β§ π¦ β π΄) β π¦ β π) |
36 | | simplr1 1040 |
. . . . 5
β’ ((((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β β© π΄ β§ π β β© π΄)) β§ π¦ β π΄) β π₯ β (Baseβ(Scalarβπ))) |
37 | | simplr2 1041 |
. . . . . 6
β’ ((((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β β© π΄ β§ π β β© π΄)) β§ π¦ β π΄) β π β β© π΄) |
38 | | simpr 110 |
. . . . . 6
β’ ((((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β β© π΄ β§ π β β© π΄)) β§ π¦ β π΄) β π¦ β π΄) |
39 | | elinti 3865 |
. . . . . 6
β’ (π β β© π΄
β (π¦ β π΄ β π β π¦)) |
40 | 37, 38, 39 | sylc 62 |
. . . . 5
β’ ((((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β β© π΄ β§ π β β© π΄)) β§ π¦ β π΄) β π β π¦) |
41 | | simplr3 1042 |
. . . . . 6
β’ ((((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β β© π΄ β§ π β β© π΄)) β§ π¦ β π΄) β π β β© π΄) |
42 | | elinti 3865 |
. . . . . 6
β’ (π β β© π΄
β (π¦ β π΄ β π β π¦)) |
43 | 41, 38, 42 | sylc 62 |
. . . . 5
β’ ((((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β β© π΄ β§ π β β© π΄)) β§ π¦ β π΄) β π β π¦) |
44 | | eqid 2187 |
. . . . . 6
β’
(Scalarβπ) =
(Scalarβπ) |
45 | | eqid 2187 |
. . . . . 6
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
46 | | eqid 2187 |
. . . . . 6
β’
(+gβπ) = (+gβπ) |
47 | | eqid 2187 |
. . . . . 6
β’ (
Β·π βπ) = ( Β·π
βπ) |
48 | 44, 45, 46, 47, 6 | lssclg 13548 |
. . . . 5
β’ ((π β LMod β§ π¦ β π β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β π¦ β§ π β π¦)) β ((π₯( Β·π
βπ)π)(+gβπ)π) β π¦) |
49 | 34, 35, 36, 40, 43, 48 | syl113anc 1260 |
. . . 4
β’ ((((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β β© π΄ β§ π β β© π΄)) β§ π¦ β π΄) β ((π₯( Β·π
βπ)π)(+gβπ)π) β π¦) |
50 | 49 | ralrimiva 2560 |
. . 3
β’ (((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β β© π΄ β§ π β β© π΄)) β βπ¦ β π΄ ((π₯( Β·π
βπ)π)(+gβπ)π) β π¦) |
51 | | vex 2752 |
. . . . . . . . 9
β’ π₯ β V |
52 | 51 | a1i 9 |
. . . . . . . 8
β’ (π β LMod β π₯ β V) |
53 | | vscaslid 12635 |
. . . . . . . . 9
β’ (
Β·π = Slot (
Β·π βndx) β§ (
Β·π βndx) β
β) |
54 | 53 | slotex 12502 |
. . . . . . . 8
β’ (π β LMod β (
Β·π βπ) β V) |
55 | | vex 2752 |
. . . . . . . . 9
β’ π β V |
56 | 55 | a1i 9 |
. . . . . . . 8
β’ (π β LMod β π β V) |
57 | | ovexg 5922 |
. . . . . . . 8
β’ ((π₯ β V β§ (
Β·π βπ) β V β§ π β V) β (π₯( Β·π
βπ)π) β V) |
58 | 52, 54, 56, 57 | syl3anc 1248 |
. . . . . . 7
β’ (π β LMod β (π₯(
Β·π βπ)π) β V) |
59 | | plusgslid 12585 |
. . . . . . . 8
β’
(+g = Slot (+gβndx) β§
(+gβndx) β β) |
60 | 59 | slotex 12502 |
. . . . . . 7
β’ (π β LMod β
(+gβπ)
β V) |
61 | | vex 2752 |
. . . . . . . 8
β’ π β V |
62 | 61 | a1i 9 |
. . . . . . 7
β’ (π β LMod β π β V) |
63 | | ovexg 5922 |
. . . . . . 7
β’ (((π₯(
Β·π βπ)π) β V β§ (+gβπ) β V β§ π β V) β ((π₯(
Β·π βπ)π)(+gβπ)π) β V) |
64 | 58, 60, 62, 63 | syl3anc 1248 |
. . . . . 6
β’ (π β LMod β ((π₯(
Β·π βπ)π)(+gβπ)π) β V) |
65 | | elintg 3864 |
. . . . . 6
β’ (((π₯(
Β·π βπ)π)(+gβπ)π) β V β (((π₯( Β·π
βπ)π)(+gβπ)π) β β© π΄ β βπ¦ β π΄ ((π₯( Β·π
βπ)π)(+gβπ)π) β π¦)) |
66 | 64, 65 | syl 14 |
. . . . 5
β’ (π β LMod β (((π₯(
Β·π βπ)π)(+gβπ)π) β β© π΄ β βπ¦ β π΄ ((π₯( Β·π
βπ)π)(+gβπ)π) β π¦)) |
67 | 66 | 3ad2ant1 1019 |
. . . 4
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β (((π₯( Β·π
βπ)π)(+gβπ)π) β β© π΄ β βπ¦ β π΄ ((π₯( Β·π
βπ)π)(+gβπ)π) β π¦)) |
68 | 67 | adantr 276 |
. . 3
β’ (((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β β© π΄ β§ π β β© π΄)) β (((π₯( Β·π
βπ)π)(+gβπ)π) β β© π΄ β βπ¦ β π΄ ((π₯( Β·π
βπ)π)(+gβπ)π) β π¦)) |
69 | 50, 68 | mpbird 167 |
. 2
β’ (((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β β© π΄ β§ π β β© π΄)) β ((π₯( Β·π
βπ)π)(+gβπ)π) β β© π΄) |
70 | | simp1 998 |
. 2
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β π β LMod) |
71 | 1, 2, 3, 4, 5, 7, 19, 33, 69, 70 | islssmd 13543 |
1
β’ ((π β LMod β§ π΄ β π β§ βπ€ π€ β π΄) β β© π΄ β π) |