| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpr3 1007 | 
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐶 ⊆ 𝐵) | 
| 2 |   | simpr2 1006 | 
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐵 ⊆ 𝐴) | 
| 3 | 1, 2 | sstrd 3193 | 
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐶 ⊆ 𝐴) | 
| 4 |   | df-ss 3170 | 
. . . . . 6
⊢ (𝐶 ⊆ 𝐴 ↔ (𝐶 ∩ 𝐴) = 𝐶) | 
| 5 | 3, 4 | sylib 122 | 
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∩ 𝐴) = 𝐶) | 
| 6 | 5 | eqcomd 2202 | 
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐶 = (𝐶 ∩ 𝐴)) | 
| 7 |   | ineq1 3357 | 
. . . . . 6
⊢ (𝑣 = 𝐶 → (𝑣 ∩ 𝐴) = (𝐶 ∩ 𝐴)) | 
| 8 | 7 | rspceeqv 2886 | 
. . . . 5
⊢ ((𝐶 ∈ 𝐽 ∧ 𝐶 = (𝐶 ∩ 𝐴)) → ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴)) | 
| 9 | 8 | expcom 116 | 
. . . 4
⊢ (𝐶 = (𝐶 ∩ 𝐴) → (𝐶 ∈ 𝐽 → ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴))) | 
| 10 | 6, 9 | syl 14 | 
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 → ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴))) | 
| 11 |   | inass 3373 | 
. . . . . 6
⊢ ((𝑣 ∩ 𝐴) ∩ 𝐵) = (𝑣 ∩ (𝐴 ∩ 𝐵)) | 
| 12 |   | simprr 531 | 
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝐶 = (𝑣 ∩ 𝐴)) | 
| 13 | 12 | ineq1d 3363 | 
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → (𝐶 ∩ 𝐵) = ((𝑣 ∩ 𝐴) ∩ 𝐵)) | 
| 14 |   | simplr3 1043 | 
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ 𝑣 ∈ 𝐽) → 𝐶 ⊆ 𝐵) | 
| 15 |   | df-ss 3170 | 
. . . . . . . . 9
⊢ (𝐶 ⊆ 𝐵 ↔ (𝐶 ∩ 𝐵) = 𝐶) | 
| 16 | 14, 15 | sylib 122 | 
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ 𝑣 ∈ 𝐽) → (𝐶 ∩ 𝐵) = 𝐶) | 
| 17 | 16 | adantrr 479 | 
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → (𝐶 ∩ 𝐵) = 𝐶) | 
| 18 | 13, 17 | eqtr3d 2231 | 
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → ((𝑣 ∩ 𝐴) ∩ 𝐵) = 𝐶) | 
| 19 |   | simplr2 1042 | 
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ 𝑣 ∈ 𝐽) → 𝐵 ⊆ 𝐴) | 
| 20 |   | sseqin2 3382 | 
. . . . . . . . 9
⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | 
| 21 | 19, 20 | sylib 122 | 
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ 𝑣 ∈ 𝐽) → (𝐴 ∩ 𝐵) = 𝐵) | 
| 22 | 21 | ineq2d 3364 | 
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ 𝑣 ∈ 𝐽) → (𝑣 ∩ (𝐴 ∩ 𝐵)) = (𝑣 ∩ 𝐵)) | 
| 23 | 22 | adantrr 479 | 
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → (𝑣 ∩ (𝐴 ∩ 𝐵)) = (𝑣 ∩ 𝐵)) | 
| 24 | 11, 18, 23 | 3eqtr3a 2253 | 
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝐶 = (𝑣 ∩ 𝐵)) | 
| 25 |   | simplll 533 | 
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝐽 ∈ Top) | 
| 26 |   | simprl 529 | 
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝑣 ∈ 𝐽) | 
| 27 |   | simplr1 1041 | 
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝐵 ∈ 𝐽) | 
| 28 |   | inopn 14239 | 
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑣 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝑣 ∩ 𝐵) ∈ 𝐽) | 
| 29 | 25, 26, 27, 28 | syl3anc 1249 | 
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → (𝑣 ∩ 𝐵) ∈ 𝐽) | 
| 30 | 24, 29 | eqeltrd 2273 | 
. . . 4
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝐶 ∈ 𝐽) | 
| 31 | 30 | rexlimdvaa 2615 | 
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴) → 𝐶 ∈ 𝐽)) | 
| 32 | 10, 31 | impbid 129 | 
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 ↔ ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴))) | 
| 33 |   | elrest 12917 | 
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐶 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴))) | 
| 34 | 33 | adantr 276 | 
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴))) | 
| 35 | 32, 34 | bitr4d 191 | 
1
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 ↔ 𝐶 ∈ (𝐽 ↾t 𝐴))) |