Step | Hyp | Ref
| Expression |
1 | | simpr3 995 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐶 ⊆ 𝐵) |
2 | | simpr2 994 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐵 ⊆ 𝐴) |
3 | 1, 2 | sstrd 3152 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐶 ⊆ 𝐴) |
4 | | df-ss 3129 |
. . . . . 6
⊢ (𝐶 ⊆ 𝐴 ↔ (𝐶 ∩ 𝐴) = 𝐶) |
5 | 3, 4 | sylib 121 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∩ 𝐴) = 𝐶) |
6 | 5 | eqcomd 2171 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐶 = (𝐶 ∩ 𝐴)) |
7 | | ineq1 3316 |
. . . . . 6
⊢ (𝑣 = 𝐶 → (𝑣 ∩ 𝐴) = (𝐶 ∩ 𝐴)) |
8 | 7 | rspceeqv 2848 |
. . . . 5
⊢ ((𝐶 ∈ 𝐽 ∧ 𝐶 = (𝐶 ∩ 𝐴)) → ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴)) |
9 | 8 | expcom 115 |
. . . 4
⊢ (𝐶 = (𝐶 ∩ 𝐴) → (𝐶 ∈ 𝐽 → ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴))) |
10 | 6, 9 | syl 14 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 → ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴))) |
11 | | inass 3332 |
. . . . . 6
⊢ ((𝑣 ∩ 𝐴) ∩ 𝐵) = (𝑣 ∩ (𝐴 ∩ 𝐵)) |
12 | | simprr 522 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝐶 = (𝑣 ∩ 𝐴)) |
13 | 12 | ineq1d 3322 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → (𝐶 ∩ 𝐵) = ((𝑣 ∩ 𝐴) ∩ 𝐵)) |
14 | | simplr3 1031 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ 𝑣 ∈ 𝐽) → 𝐶 ⊆ 𝐵) |
15 | | df-ss 3129 |
. . . . . . . . 9
⊢ (𝐶 ⊆ 𝐵 ↔ (𝐶 ∩ 𝐵) = 𝐶) |
16 | 14, 15 | sylib 121 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ 𝑣 ∈ 𝐽) → (𝐶 ∩ 𝐵) = 𝐶) |
17 | 16 | adantrr 471 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → (𝐶 ∩ 𝐵) = 𝐶) |
18 | 13, 17 | eqtr3d 2200 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → ((𝑣 ∩ 𝐴) ∩ 𝐵) = 𝐶) |
19 | | simplr2 1030 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ 𝑣 ∈ 𝐽) → 𝐵 ⊆ 𝐴) |
20 | | sseqin2 3341 |
. . . . . . . . 9
⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) |
21 | 19, 20 | sylib 121 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ 𝑣 ∈ 𝐽) → (𝐴 ∩ 𝐵) = 𝐵) |
22 | 21 | ineq2d 3323 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ 𝑣 ∈ 𝐽) → (𝑣 ∩ (𝐴 ∩ 𝐵)) = (𝑣 ∩ 𝐵)) |
23 | 22 | adantrr 471 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → (𝑣 ∩ (𝐴 ∩ 𝐵)) = (𝑣 ∩ 𝐵)) |
24 | 11, 18, 23 | 3eqtr3a 2223 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝐶 = (𝑣 ∩ 𝐵)) |
25 | | simplll 523 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝐽 ∈ Top) |
26 | | simprl 521 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝑣 ∈ 𝐽) |
27 | | simplr1 1029 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝐵 ∈ 𝐽) |
28 | | inopn 12641 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑣 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝑣 ∩ 𝐵) ∈ 𝐽) |
29 | 25, 26, 27, 28 | syl3anc 1228 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → (𝑣 ∩ 𝐵) ∈ 𝐽) |
30 | 24, 29 | eqeltrd 2243 |
. . . 4
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝐶 ∈ 𝐽) |
31 | 30 | rexlimdvaa 2584 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴) → 𝐶 ∈ 𝐽)) |
32 | 10, 31 | impbid 128 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 ↔ ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴))) |
33 | | elrest 12563 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐶 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴))) |
34 | 33 | adantr 274 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴))) |
35 | 32, 34 | bitr4d 190 |
1
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 ↔ 𝐶 ∈ (𝐽 ↾t 𝐴))) |