Step | Hyp | Ref
| Expression |
1 | | 0z 9235 |
. . . . . . 7
⊢ 0 ∈
ℤ |
2 | | zq 9597 |
. . . . . . 7
⊢ (0 ∈
ℤ → 0 ∈ ℚ) |
3 | 1, 2 | ax-mp 5 |
. . . . . 6
⊢ 0 ∈
ℚ |
4 | | pcxcl 12277 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 0 ∈
ℚ) → (𝑃 pCnt 0)
∈ ℝ*) |
5 | 3, 4 | mpan2 425 |
. . . . 5
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) ∈
ℝ*) |
6 | 5 | xrleidd 9770 |
. . . 4
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) ≤ (𝑃 pCnt 0)) |
7 | 6 | ad2antrr 488 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 0) ≤ (𝑃 pCnt 0)) |
8 | | simpr 110 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → 𝐴 = 0) |
9 | 8 | oveq2d 5881 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐴) = (𝑃 pCnt 0)) |
10 | | simplr3 1041 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → 𝐴 ∥ 𝐵) |
11 | 8, 10 | eqbrtrrd 4022 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → 0 ∥ 𝐵) |
12 | | simplr2 1040 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → 𝐵 ∈ ℤ) |
13 | | 0dvds 11785 |
. . . . . 6
⊢ (𝐵 ∈ ℤ → (0
∥ 𝐵 ↔ 𝐵 = 0)) |
14 | 12, 13 | syl 14 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → (0 ∥ 𝐵 ↔ 𝐵 = 0)) |
15 | 11, 14 | mpbid 147 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → 𝐵 = 0) |
16 | 15 | oveq2d 5881 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐵) = (𝑃 pCnt 0)) |
17 | 7, 9, 16 | 3brtr4d 4030 |
. 2
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) |
18 | | prmnn 12076 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
19 | 18 | ad2antrr 488 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → 𝑃 ∈ ℕ) |
20 | | simpll 527 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → 𝑃 ∈ ℙ) |
21 | | simplr1 1039 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ) |
22 | | simpr 110 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0) |
23 | | pczcl 12264 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈
ℕ0) |
24 | 20, 21, 22, 23 | syl12anc 1236 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → (𝑃 pCnt 𝐴) ∈
ℕ0) |
25 | 19, 24 | nnexpcld 10643 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ) |
26 | 25 | nnzd 9345 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ) |
27 | | simplr2 1040 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℤ) |
28 | | pczdvds 12279 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴) |
29 | 20, 21, 22, 28 | syl12anc 1236 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴) |
30 | | simplr3 1041 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → 𝐴 ∥ 𝐵) |
31 | 26, 21, 27, 29, 30 | dvdstrd 11804 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵) |
32 | | pcdvdsb 12285 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵)) |
33 | 20, 27, 24, 32 | syl3anc 1238 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵)) |
34 | 31, 33 | mpbird 167 |
. 2
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) |
35 | | simpr1 1003 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) → 𝐴 ∈ ℤ) |
36 | | zdceq 9299 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝐴 = 0) |
37 | 35, 1, 36 | sylancl 413 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) → DECID 𝐴 = 0) |
38 | | dcne 2356 |
. . 3
⊢
(DECID 𝐴 = 0 ↔ (𝐴 = 0 ∨ 𝐴 ≠ 0)) |
39 | 37, 38 | sylib 122 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) → (𝐴 = 0 ∨ 𝐴 ≠ 0)) |
40 | 17, 34, 39 | mpjaodan 798 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) |