| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll3 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1004 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: frirrg 4386 fidceq 6939 fidifsnen 6940 en2eqpr 6977 iunfidisj 7021 ordiso2 7110 addlocpr 7622 aptiprlemu 7726 xltadd1 9970 xlesubadd 9977 icoshftf1o 10085 fztri3or 10133 elfzonelfzo 10325 exp3val 10652 nn0ltexp2 10820 hashun 10916 subcn2 11495 divalglemeuneg 12107 dvdslegcd 12158 lcmledvds 12265 rpdvds 12294 cncongr2 12299 qexpz 12548 iuncld 14459 iscnp4 14562 cnpnei 14563 cnconst2 14577 cnpdis 14586 txcn 14619 blssps 14771 blss 14772 metcnp3 14855 metcnp 14856 lgsfcl2 15355 lgsdir 15384 lgsne0 15387 |
| Copyright terms: Public domain | W3C validator |