Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpll3 | GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simpll3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 997 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
2 | 1 | adantr 274 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: frirrg 4333 fidceq 6843 fidifsnen 6844 en2eqpr 6881 iunfidisj 6919 ordiso2 7008 addlocpr 7485 aptiprlemu 7589 xltadd1 9820 xlesubadd 9827 icoshftf1o 9935 fztri3or 9982 elfzonelfzo 10173 exp3val 10465 nn0ltexp2 10631 hashun 10727 subcn2 11261 divalglemeuneg 11869 dvdslegcd 11906 lcmledvds 12011 rpdvds 12040 cncongr2 12045 qexpz 12291 iuncld 12868 iscnp4 12971 cnpnei 12972 cnconst2 12986 cnpdis 12995 txcn 13028 blssps 13180 blss 13181 metcnp3 13264 metcnp 13265 lgsfcl2 13660 lgsdir 13689 lgsne0 13692 |
Copyright terms: Public domain | W3C validator |