ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll3 GIF version

Theorem simpll3 1033
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll3 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒)

Proof of Theorem simpll3
StepHypRef Expression
1 simpl3 997 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜒)
21adantr 274 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  frirrg  4333  fidceq  6843  fidifsnen  6844  en2eqpr  6881  iunfidisj  6919  ordiso2  7008  addlocpr  7485  aptiprlemu  7589  xltadd1  9820  xlesubadd  9827  icoshftf1o  9935  fztri3or  9982  elfzonelfzo  10173  exp3val  10465  nn0ltexp2  10631  hashun  10727  subcn2  11261  divalglemeuneg  11869  dvdslegcd  11906  lcmledvds  12011  rpdvds  12040  cncongr2  12045  qexpz  12291  iuncld  12868  iscnp4  12971  cnpnei  12972  cnconst2  12986  cnpdis  12995  txcn  13028  blssps  13180  blss  13181  metcnp3  13264  metcnp  13265  lgsfcl2  13660  lgsdir  13689  lgsne0  13692
  Copyright terms: Public domain W3C validator