ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll3 GIF version

Theorem simpll3 1062
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll3 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒)

Proof of Theorem simpll3
StepHypRef Expression
1 simpl3 1026 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜒)
21adantr 276 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  frirrg  4438  fidceq  7019  fidifsnen  7020  en2eqpr  7057  iunfidisj  7101  ordiso2  7190  addlocpr  7711  aptiprlemu  7815  xltadd1  10060  xlesubadd  10067  icoshftf1o  10175  fztri3or  10223  elfzonelfzo  10423  exp3val  10750  nn0ltexp2  10918  hashun  11014  swrdclg  11168  subcn2  11808  divalglemeuneg  12420  dvdslegcd  12471  lcmledvds  12578  rpdvds  12607  cncongr2  12612  qexpz  12861  iuncld  14774  iscnp4  14877  cnpnei  14878  cnconst2  14892  cnpdis  14901  txcn  14934  blssps  15086  blss  15087  metcnp3  15170  metcnp  15171  lgsfcl2  15670  lgsdir  15699  lgsne0  15702
  Copyright terms: Public domain W3C validator