| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll3 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1026 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: frirrg 4438 fidceq 7019 fidifsnen 7020 en2eqpr 7057 iunfidisj 7101 ordiso2 7190 addlocpr 7711 aptiprlemu 7815 xltadd1 10060 xlesubadd 10067 icoshftf1o 10175 fztri3or 10223 elfzonelfzo 10423 exp3val 10750 nn0ltexp2 10918 hashun 11014 swrdclg 11168 subcn2 11808 divalglemeuneg 12420 dvdslegcd 12471 lcmledvds 12578 rpdvds 12607 cncongr2 12612 qexpz 12861 iuncld 14774 iscnp4 14877 cnpnei 14878 cnconst2 14892 cnpdis 14901 txcn 14934 blssps 15086 blss 15087 metcnp3 15170 metcnp 15171 lgsfcl2 15670 lgsdir 15699 lgsne0 15702 |
| Copyright terms: Public domain | W3C validator |