| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll3 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1005 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: frirrg 4402 fidceq 6978 fidifsnen 6979 en2eqpr 7016 iunfidisj 7060 ordiso2 7149 addlocpr 7662 aptiprlemu 7766 xltadd1 10011 xlesubadd 10018 icoshftf1o 10126 fztri3or 10174 elfzonelfzo 10372 exp3val 10699 nn0ltexp2 10867 hashun 10963 swrdclg 11117 subcn2 11672 divalglemeuneg 12284 dvdslegcd 12335 lcmledvds 12442 rpdvds 12471 cncongr2 12476 qexpz 12725 iuncld 14637 iscnp4 14740 cnpnei 14741 cnconst2 14755 cnpdis 14764 txcn 14797 blssps 14949 blss 14950 metcnp3 15033 metcnp 15034 lgsfcl2 15533 lgsdir 15562 lgsne0 15565 |
| Copyright terms: Public domain | W3C validator |