| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll3 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1004 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: frirrg 4386 fidceq 6939 fidifsnen 6940 en2eqpr 6977 iunfidisj 7021 ordiso2 7110 addlocpr 7620 aptiprlemu 7724 xltadd1 9968 xlesubadd 9975 icoshftf1o 10083 fztri3or 10131 elfzonelfzo 10323 exp3val 10650 nn0ltexp2 10818 hashun 10914 subcn2 11493 divalglemeuneg 12105 dvdslegcd 12156 lcmledvds 12263 rpdvds 12292 cncongr2 12297 qexpz 12546 iuncld 14435 iscnp4 14538 cnpnei 14539 cnconst2 14553 cnpdis 14562 txcn 14595 blssps 14747 blss 14748 metcnp3 14831 metcnp 14832 lgsfcl2 15331 lgsdir 15360 lgsne0 15363 |
| Copyright terms: Public domain | W3C validator |