| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll3 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1004 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: frirrg 4385 fidceq 6930 fidifsnen 6931 en2eqpr 6968 iunfidisj 7012 ordiso2 7101 addlocpr 7603 aptiprlemu 7707 xltadd1 9951 xlesubadd 9958 icoshftf1o 10066 fztri3or 10114 elfzonelfzo 10306 exp3val 10633 nn0ltexp2 10801 hashun 10897 subcn2 11476 divalglemeuneg 12088 dvdslegcd 12131 lcmledvds 12238 rpdvds 12267 cncongr2 12272 qexpz 12521 iuncld 14351 iscnp4 14454 cnpnei 14455 cnconst2 14469 cnpdis 14478 txcn 14511 blssps 14663 blss 14664 metcnp3 14747 metcnp 14748 lgsfcl2 15247 lgsdir 15276 lgsne0 15279 |
| Copyright terms: Public domain | W3C validator |