ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll3 GIF version

Theorem simpll3 1040
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll3 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒)

Proof of Theorem simpll3
StepHypRef Expression
1 simpl3 1004 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜒)
21adantr 276 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  frirrg  4385  fidceq  6930  fidifsnen  6931  en2eqpr  6968  iunfidisj  7012  ordiso2  7101  addlocpr  7603  aptiprlemu  7707  xltadd1  9951  xlesubadd  9958  icoshftf1o  10066  fztri3or  10114  elfzonelfzo  10306  exp3val  10633  nn0ltexp2  10801  hashun  10897  subcn2  11476  divalglemeuneg  12088  dvdslegcd  12131  lcmledvds  12238  rpdvds  12267  cncongr2  12272  qexpz  12521  iuncld  14351  iscnp4  14454  cnpnei  14455  cnconst2  14469  cnpdis  14478  txcn  14511  blssps  14663  blss  14664  metcnp3  14747  metcnp  14748  lgsfcl2  15247  lgsdir  15276  lgsne0  15279
  Copyright terms: Public domain W3C validator