![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpll3 | GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simpll3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1004 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: frirrg 4381 fidceq 6925 fidifsnen 6926 en2eqpr 6963 iunfidisj 7005 ordiso2 7094 addlocpr 7596 aptiprlemu 7700 xltadd1 9942 xlesubadd 9949 icoshftf1o 10057 fztri3or 10105 elfzonelfzo 10297 exp3val 10612 nn0ltexp2 10780 hashun 10876 subcn2 11454 divalglemeuneg 12064 dvdslegcd 12101 lcmledvds 12208 rpdvds 12237 cncongr2 12242 qexpz 12490 iuncld 14283 iscnp4 14386 cnpnei 14387 cnconst2 14401 cnpdis 14410 txcn 14443 blssps 14595 blss 14596 metcnp3 14679 metcnp 14680 lgsfcl2 15122 lgsdir 15151 lgsne0 15154 |
Copyright terms: Public domain | W3C validator |