| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpll3 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simpll3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1026 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: frirrg 4441 fidceq 7039 fidifsnen 7040 en2eqpr 7077 iunfidisj 7121 ordiso2 7210 addlocpr 7731 aptiprlemu 7835 xltadd1 10080 xlesubadd 10087 icoshftf1o 10195 fztri3or 10243 elfzonelfzo 10444 exp3val 10771 nn0ltexp2 10939 hashun 11035 swrdclg 11190 subcn2 11830 divalglemeuneg 12442 dvdslegcd 12493 lcmledvds 12600 rpdvds 12629 cncongr2 12634 qexpz 12883 iuncld 14797 iscnp4 14900 cnpnei 14901 cnconst2 14915 cnpdis 14924 txcn 14957 blssps 15109 blss 15110 metcnp3 15193 metcnp 15194 lgsfcl2 15693 lgsdir 15722 lgsne0 15725 |
| Copyright terms: Public domain | W3C validator |