Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpll3 | GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simpll3 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 992 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
2 | 1 | adantr 274 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: frirrg 4328 fidceq 6835 fidifsnen 6836 en2eqpr 6873 iunfidisj 6911 ordiso2 7000 addlocpr 7477 aptiprlemu 7581 xltadd1 9812 xlesubadd 9819 icoshftf1o 9927 fztri3or 9974 elfzonelfzo 10165 exp3val 10457 nn0ltexp2 10623 hashun 10718 subcn2 11252 divalglemeuneg 11860 dvdslegcd 11897 lcmledvds 12002 rpdvds 12031 cncongr2 12036 qexpz 12282 iuncld 12755 iscnp4 12858 cnpnei 12859 cnconst2 12873 cnpdis 12882 txcn 12915 blssps 13067 blss 13068 metcnp3 13151 metcnp 13152 lgsfcl2 13547 lgsdir 13576 lgsne0 13579 |
Copyright terms: Public domain | W3C validator |