ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemlt GIF version

Theorem prarloclemlt 7577
Description: Two possible ways of contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7587. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
prarloclemlt (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))

Proof of Theorem prarloclemlt
StepHypRef Expression
1 2onn 6588 . . . . . . . . . . . 12 2o ∈ ω
2 nnacl 6547 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 2o ∈ ω) → (𝑦 +o 2o) ∈ ω)
31, 2mpan2 425 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 +o 2o) ∈ ω)
4 nnaword1 6580 . . . . . . . . . . 11 (((𝑦 +o 2o) ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +o 2o) ⊆ ((𝑦 +o 2o) +o 𝑋))
53, 4sylan 283 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +o 2o) ⊆ ((𝑦 +o 2o) +o 𝑋))
6 1oex 6491 . . . . . . . . . . . . . 14 1o ∈ V
76sucid 4453 . . . . . . . . . . . . 13 1o ∈ suc 1o
8 df-2o 6484 . . . . . . . . . . . . 13 2o = suc 1o
97, 8eleqtrri 2272 . . . . . . . . . . . 12 1o ∈ 2o
10 nnaordi 6575 . . . . . . . . . . . . 13 ((2o ∈ ω ∧ 𝑦 ∈ ω) → (1o ∈ 2o → (𝑦 +o 1o) ∈ (𝑦 +o 2o)))
111, 10mpan 424 . . . . . . . . . . . 12 (𝑦 ∈ ω → (1o ∈ 2o → (𝑦 +o 1o) ∈ (𝑦 +o 2o)))
129, 11mpi 15 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 +o 1o) ∈ (𝑦 +o 2o))
1312adantr 276 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +o 1o) ∈ (𝑦 +o 2o))
145, 13sseldd 3185 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +o 1o) ∈ ((𝑦 +o 2o) +o 𝑋))
1514ancoms 268 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o 1o) ∈ ((𝑦 +o 2o) +o 𝑋))
16 1pi 7399 . . . . . . . . . . 11 1oN
17 nnppipi 7427 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 1oN) → (𝑦 +o 1o) ∈ N)
1816, 17mpan2 425 . . . . . . . . . 10 (𝑦 ∈ ω → (𝑦 +o 1o) ∈ N)
1918adantl 277 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o 1o) ∈ N)
20 o1p1e2 6535 . . . . . . . . . . . . . 14 (1o +o 1o) = 2o
21 1onn 6587 . . . . . . . . . . . . . . 15 1o ∈ ω
22 nnppipi 7427 . . . . . . . . . . . . . . 15 ((1o ∈ ω ∧ 1oN) → (1o +o 1o) ∈ N)
2321, 16, 22mp2an 426 . . . . . . . . . . . . . 14 (1o +o 1o) ∈ N
2420, 23eqeltrri 2270 . . . . . . . . . . . . 13 2oN
25 nnppipi 7427 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 2oN) → (𝑦 +o 2o) ∈ N)
2624, 25mpan2 425 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝑦 +o 2o) ∈ N)
27 pinn 7393 . . . . . . . . . . . 12 ((𝑦 +o 2o) ∈ N → (𝑦 +o 2o) ∈ ω)
2826, 27syl 14 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 +o 2o) ∈ ω)
29 nnacom 6551 . . . . . . . . . . 11 ((𝑋 ∈ ω ∧ (𝑦 +o 2o) ∈ ω) → (𝑋 +o (𝑦 +o 2o)) = ((𝑦 +o 2o) +o 𝑋))
3028, 29sylan2 286 . . . . . . . . . 10 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑋 +o (𝑦 +o 2o)) = ((𝑦 +o 2o) +o 𝑋))
31 nnppipi 7427 . . . . . . . . . . 11 ((𝑋 ∈ ω ∧ (𝑦 +o 2o) ∈ N) → (𝑋 +o (𝑦 +o 2o)) ∈ N)
3226, 31sylan2 286 . . . . . . . . . 10 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑋 +o (𝑦 +o 2o)) ∈ N)
3330, 32eqeltrrd 2274 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +o 2o) +o 𝑋) ∈ N)
34 ltpiord 7403 . . . . . . . . 9 (((𝑦 +o 1o) ∈ N ∧ ((𝑦 +o 2o) +o 𝑋) ∈ N) → ((𝑦 +o 1o) <N ((𝑦 +o 2o) +o 𝑋) ↔ (𝑦 +o 1o) ∈ ((𝑦 +o 2o) +o 𝑋)))
3519, 33, 34syl2anc 411 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +o 1o) <N ((𝑦 +o 2o) +o 𝑋) ↔ (𝑦 +o 1o) ∈ ((𝑦 +o 2o) +o 𝑋)))
3615, 35mpbird 167 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o 1o) <N ((𝑦 +o 2o) +o 𝑋))
37 mulidpi 7402 . . . . . . . . 9 ((𝑦 +o 1o) ∈ N → ((𝑦 +o 1o) ·N 1o) = (𝑦 +o 1o))
3819, 37syl 14 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +o 1o) ·N 1o) = (𝑦 +o 1o))
39 mulcompig 7415 . . . . . . . . . 10 ((((𝑦 +o 2o) +o 𝑋) ∈ N ∧ 1oN) → (((𝑦 +o 2o) +o 𝑋) ·N 1o) = (1o ·N ((𝑦 +o 2o) +o 𝑋)))
4033, 16, 39sylancl 413 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (((𝑦 +o 2o) +o 𝑋) ·N 1o) = (1o ·N ((𝑦 +o 2o) +o 𝑋)))
41 mulidpi 7402 . . . . . . . . . 10 (((𝑦 +o 2o) +o 𝑋) ∈ N → (((𝑦 +o 2o) +o 𝑋) ·N 1o) = ((𝑦 +o 2o) +o 𝑋))
4233, 41syl 14 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (((𝑦 +o 2o) +o 𝑋) ·N 1o) = ((𝑦 +o 2o) +o 𝑋))
4340, 42eqtr3d 2231 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (1o ·N ((𝑦 +o 2o) +o 𝑋)) = ((𝑦 +o 2o) +o 𝑋))
4438, 43breq12d 4047 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋)) ↔ (𝑦 +o 1o) <N ((𝑦 +o 2o) +o 𝑋)))
4536, 44mpbird 167 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋)))
46 simpr 110 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω)
47 ordpipqqs 7458 . . . . . . . . . 10 ((((𝑦 +o 1o) ∈ N ∧ 1oN) ∧ (((𝑦 +o 2o) +o 𝑋) ∈ N ∧ 1oN)) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋))))
4816, 47mpanl2 435 . . . . . . . . 9 (((𝑦 +o 1o) ∈ N ∧ (((𝑦 +o 2o) +o 𝑋) ∈ N ∧ 1oN)) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋))))
4916, 48mpanr2 438 . . . . . . . 8 (((𝑦 +o 1o) ∈ N ∧ ((𝑦 +o 2o) +o 𝑋) ∈ N) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋))))
5018, 49sylan 283 . . . . . . 7 ((𝑦 ∈ ω ∧ ((𝑦 +o 2o) +o 𝑋) ∈ N) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋))))
5146, 33, 50syl2anc 411 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋))))
5245, 51mpbird 167 . . . . 5 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )
5352adantlr 477 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )
54 opelxpi 4696 . . . . . . . . 9 (((𝑦 +o 1o) ∈ N ∧ 1oN) → ⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N))
5519, 16, 54sylancl 413 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N))
56 enqex 7444 . . . . . . . . 9 ~Q ∈ V
5756ecelqsi 6657 . . . . . . . 8 (⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N) → [⟨(𝑦 +o 1o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
5855, 57syl 14 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
59 df-nqqs 7432 . . . . . . 7 Q = ((N × N) / ~Q )
6058, 59eleqtrrdi 2290 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~QQ)
6160adantlr 477 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~QQ)
62 opelxpi 4696 . . . . . . . . 9 ((((𝑦 +o 2o) +o 𝑋) ∈ N ∧ 1oN) → ⟨((𝑦 +o 2o) +o 𝑋), 1o⟩ ∈ (N × N))
6333, 16, 62sylancl 413 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ⟨((𝑦 +o 2o) +o 𝑋), 1o⟩ ∈ (N × N))
6456ecelqsi 6657 . . . . . . . 8 (⟨((𝑦 +o 2o) +o 𝑋), 1o⟩ ∈ (N × N) → [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
6563, 64syl 14 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
6665, 59eleqtrrdi 2290 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~QQ)
6766adantlr 477 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~QQ)
68 simplr3 1043 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝑃Q)
69 ltmnqg 7485 . . . . 5 (([⟨(𝑦 +o 1o), 1o⟩] ~QQ ∧ [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~QQ𝑃Q) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ (𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )))
7061, 67, 68, 69syl3anc 1249 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ (𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )))
7153, 70mpbid 147 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ))
72 mulcomnqg 7467 . . . . 5 ((𝑃Q ∧ [⟨(𝑦 +o 1o), 1o⟩] ~QQ) → (𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃))
7368, 61, 72syl2anc 411 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃))
74 mulcomnqg 7467 . . . . 5 ((𝑃Q ∧ [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~QQ) → (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ) = ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
7568, 67, 74syl2anc 411 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ) = ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
7673, 75breq12d 4047 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ) ↔ ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))
7771, 76mpbid 147 . 2 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
78 mulclnq 7460 . . . 4 (([⟨(𝑦 +o 1o), 1o⟩] ~QQ𝑃Q) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
7961, 68, 78syl2anc 411 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
80 mulclnq 7460 . . . 4 (([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~QQ𝑃Q) → ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
8167, 68, 80syl2anc 411 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
82 simplr1 1041 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ⟨𝐿, 𝑈⟩ ∈ P)
83 simplr2 1042 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝐴𝐿)
84 elprnql 7565 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) → 𝐴Q)
8582, 83, 84syl2anc 411 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝐴Q)
86 ltanqg 7484 . . 3 ((([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) ∈ Q ∧ ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) ∈ Q𝐴Q) → (([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) ↔ (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))))
8779, 81, 85, 86syl3anc 1249 . 2 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) ↔ (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))))
8877, 87mpbid 147 1 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wss 3157  cop 3626   class class class wbr 4034  suc csuc 4401  ωcom 4627   × cxp 4662  (class class class)co 5925  1oc1o 6476  2oc2o 6477   +o coa 6480  [cec 6599   / cqs 6600  Ncnpi 7356   ·N cmi 7358   <N clti 7359   ~Q ceq 7363  Qcnq 7364   +Q cplq 7366   ·Q cmq 7367   <Q cltq 7369  Pcnp 7375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-ltnqqs 7437  df-inp 7550
This theorem is referenced by:  prarloclem3step  7580
  Copyright terms: Public domain W3C validator