ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemlt GIF version

Theorem prarloclemlt 7455
Description: Two possible ways of contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7465. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
prarloclemlt (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))

Proof of Theorem prarloclemlt
StepHypRef Expression
1 2onn 6500 . . . . . . . . . . . 12 2o ∈ ω
2 nnacl 6459 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 2o ∈ ω) → (𝑦 +o 2o) ∈ ω)
31, 2mpan2 423 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 +o 2o) ∈ ω)
4 nnaword1 6492 . . . . . . . . . . 11 (((𝑦 +o 2o) ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +o 2o) ⊆ ((𝑦 +o 2o) +o 𝑋))
53, 4sylan 281 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +o 2o) ⊆ ((𝑦 +o 2o) +o 𝑋))
6 1oex 6403 . . . . . . . . . . . . . 14 1o ∈ V
76sucid 4402 . . . . . . . . . . . . 13 1o ∈ suc 1o
8 df-2o 6396 . . . . . . . . . . . . 13 2o = suc 1o
97, 8eleqtrri 2246 . . . . . . . . . . . 12 1o ∈ 2o
10 nnaordi 6487 . . . . . . . . . . . . 13 ((2o ∈ ω ∧ 𝑦 ∈ ω) → (1o ∈ 2o → (𝑦 +o 1o) ∈ (𝑦 +o 2o)))
111, 10mpan 422 . . . . . . . . . . . 12 (𝑦 ∈ ω → (1o ∈ 2o → (𝑦 +o 1o) ∈ (𝑦 +o 2o)))
129, 11mpi 15 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 +o 1o) ∈ (𝑦 +o 2o))
1312adantr 274 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +o 1o) ∈ (𝑦 +o 2o))
145, 13sseldd 3148 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +o 1o) ∈ ((𝑦 +o 2o) +o 𝑋))
1514ancoms 266 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o 1o) ∈ ((𝑦 +o 2o) +o 𝑋))
16 1pi 7277 . . . . . . . . . . 11 1oN
17 nnppipi 7305 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 1oN) → (𝑦 +o 1o) ∈ N)
1816, 17mpan2 423 . . . . . . . . . 10 (𝑦 ∈ ω → (𝑦 +o 1o) ∈ N)
1918adantl 275 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o 1o) ∈ N)
20 o1p1e2 6447 . . . . . . . . . . . . . 14 (1o +o 1o) = 2o
21 1onn 6499 . . . . . . . . . . . . . . 15 1o ∈ ω
22 nnppipi 7305 . . . . . . . . . . . . . . 15 ((1o ∈ ω ∧ 1oN) → (1o +o 1o) ∈ N)
2321, 16, 22mp2an 424 . . . . . . . . . . . . . 14 (1o +o 1o) ∈ N
2420, 23eqeltrri 2244 . . . . . . . . . . . . 13 2oN
25 nnppipi 7305 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 2oN) → (𝑦 +o 2o) ∈ N)
2624, 25mpan2 423 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝑦 +o 2o) ∈ N)
27 pinn 7271 . . . . . . . . . . . 12 ((𝑦 +o 2o) ∈ N → (𝑦 +o 2o) ∈ ω)
2826, 27syl 14 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 +o 2o) ∈ ω)
29 nnacom 6463 . . . . . . . . . . 11 ((𝑋 ∈ ω ∧ (𝑦 +o 2o) ∈ ω) → (𝑋 +o (𝑦 +o 2o)) = ((𝑦 +o 2o) +o 𝑋))
3028, 29sylan2 284 . . . . . . . . . 10 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑋 +o (𝑦 +o 2o)) = ((𝑦 +o 2o) +o 𝑋))
31 nnppipi 7305 . . . . . . . . . . 11 ((𝑋 ∈ ω ∧ (𝑦 +o 2o) ∈ N) → (𝑋 +o (𝑦 +o 2o)) ∈ N)
3226, 31sylan2 284 . . . . . . . . . 10 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑋 +o (𝑦 +o 2o)) ∈ N)
3330, 32eqeltrrd 2248 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +o 2o) +o 𝑋) ∈ N)
34 ltpiord 7281 . . . . . . . . 9 (((𝑦 +o 1o) ∈ N ∧ ((𝑦 +o 2o) +o 𝑋) ∈ N) → ((𝑦 +o 1o) <N ((𝑦 +o 2o) +o 𝑋) ↔ (𝑦 +o 1o) ∈ ((𝑦 +o 2o) +o 𝑋)))
3519, 33, 34syl2anc 409 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +o 1o) <N ((𝑦 +o 2o) +o 𝑋) ↔ (𝑦 +o 1o) ∈ ((𝑦 +o 2o) +o 𝑋)))
3615, 35mpbird 166 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o 1o) <N ((𝑦 +o 2o) +o 𝑋))
37 mulidpi 7280 . . . . . . . . 9 ((𝑦 +o 1o) ∈ N → ((𝑦 +o 1o) ·N 1o) = (𝑦 +o 1o))
3819, 37syl 14 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +o 1o) ·N 1o) = (𝑦 +o 1o))
39 mulcompig 7293 . . . . . . . . . 10 ((((𝑦 +o 2o) +o 𝑋) ∈ N ∧ 1oN) → (((𝑦 +o 2o) +o 𝑋) ·N 1o) = (1o ·N ((𝑦 +o 2o) +o 𝑋)))
4033, 16, 39sylancl 411 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (((𝑦 +o 2o) +o 𝑋) ·N 1o) = (1o ·N ((𝑦 +o 2o) +o 𝑋)))
41 mulidpi 7280 . . . . . . . . . 10 (((𝑦 +o 2o) +o 𝑋) ∈ N → (((𝑦 +o 2o) +o 𝑋) ·N 1o) = ((𝑦 +o 2o) +o 𝑋))
4233, 41syl 14 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (((𝑦 +o 2o) +o 𝑋) ·N 1o) = ((𝑦 +o 2o) +o 𝑋))
4340, 42eqtr3d 2205 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (1o ·N ((𝑦 +o 2o) +o 𝑋)) = ((𝑦 +o 2o) +o 𝑋))
4438, 43breq12d 4002 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋)) ↔ (𝑦 +o 1o) <N ((𝑦 +o 2o) +o 𝑋)))
4536, 44mpbird 166 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋)))
46 simpr 109 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω)
47 ordpipqqs 7336 . . . . . . . . . 10 ((((𝑦 +o 1o) ∈ N ∧ 1oN) ∧ (((𝑦 +o 2o) +o 𝑋) ∈ N ∧ 1oN)) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋))))
4816, 47mpanl2 433 . . . . . . . . 9 (((𝑦 +o 1o) ∈ N ∧ (((𝑦 +o 2o) +o 𝑋) ∈ N ∧ 1oN)) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋))))
4916, 48mpanr2 436 . . . . . . . 8 (((𝑦 +o 1o) ∈ N ∧ ((𝑦 +o 2o) +o 𝑋) ∈ N) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋))))
5018, 49sylan 281 . . . . . . 7 ((𝑦 ∈ ω ∧ ((𝑦 +o 2o) +o 𝑋) ∈ N) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋))))
5146, 33, 50syl2anc 409 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋))))
5245, 51mpbird 166 . . . . 5 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )
5352adantlr 474 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )
54 opelxpi 4643 . . . . . . . . 9 (((𝑦 +o 1o) ∈ N ∧ 1oN) → ⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N))
5519, 16, 54sylancl 411 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N))
56 enqex 7322 . . . . . . . . 9 ~Q ∈ V
5756ecelqsi 6567 . . . . . . . 8 (⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N) → [⟨(𝑦 +o 1o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
5855, 57syl 14 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
59 df-nqqs 7310 . . . . . . 7 Q = ((N × N) / ~Q )
6058, 59eleqtrrdi 2264 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~QQ)
6160adantlr 474 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~QQ)
62 opelxpi 4643 . . . . . . . . 9 ((((𝑦 +o 2o) +o 𝑋) ∈ N ∧ 1oN) → ⟨((𝑦 +o 2o) +o 𝑋), 1o⟩ ∈ (N × N))
6333, 16, 62sylancl 411 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ⟨((𝑦 +o 2o) +o 𝑋), 1o⟩ ∈ (N × N))
6456ecelqsi 6567 . . . . . . . 8 (⟨((𝑦 +o 2o) +o 𝑋), 1o⟩ ∈ (N × N) → [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
6563, 64syl 14 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
6665, 59eleqtrrdi 2264 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~QQ)
6766adantlr 474 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~QQ)
68 simplr3 1036 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝑃Q)
69 ltmnqg 7363 . . . . 5 (([⟨(𝑦 +o 1o), 1o⟩] ~QQ ∧ [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~QQ𝑃Q) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ (𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )))
7061, 67, 68, 69syl3anc 1233 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ (𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )))
7153, 70mpbid 146 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ))
72 mulcomnqg 7345 . . . . 5 ((𝑃Q ∧ [⟨(𝑦 +o 1o), 1o⟩] ~QQ) → (𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃))
7368, 61, 72syl2anc 409 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃))
74 mulcomnqg 7345 . . . . 5 ((𝑃Q ∧ [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~QQ) → (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ) = ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
7568, 67, 74syl2anc 409 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ) = ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
7673, 75breq12d 4002 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ) ↔ ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))
7771, 76mpbid 146 . 2 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
78 mulclnq 7338 . . . 4 (([⟨(𝑦 +o 1o), 1o⟩] ~QQ𝑃Q) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
7961, 68, 78syl2anc 409 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
80 mulclnq 7338 . . . 4 (([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~QQ𝑃Q) → ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
8167, 68, 80syl2anc 409 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
82 simplr1 1034 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ⟨𝐿, 𝑈⟩ ∈ P)
83 simplr2 1035 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝐴𝐿)
84 elprnql 7443 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) → 𝐴Q)
8582, 83, 84syl2anc 409 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝐴Q)
86 ltanqg 7362 . . 3 ((([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) ∈ Q ∧ ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) ∈ Q𝐴Q) → (([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) ↔ (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))))
8779, 81, 85, 86syl3anc 1233 . 2 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) ↔ (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))))
8877, 87mpbid 146 1 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wss 3121  cop 3586   class class class wbr 3989  suc csuc 4350  ωcom 4574   × cxp 4609  (class class class)co 5853  1oc1o 6388  2oc2o 6389   +o coa 6392  [cec 6511   / cqs 6512  Ncnpi 7234   ·N cmi 7236   <N clti 7237   ~Q ceq 7241  Qcnq 7242   +Q cplq 7244   ·Q cmq 7245   <Q cltq 7247  Pcnp 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-ltnqqs 7315  df-inp 7428
This theorem is referenced by:  prarloclem3step  7458
  Copyright terms: Public domain W3C validator