ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemlt GIF version

Theorem prarloclemlt 7249
Description: Two possible ways of contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7259. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
prarloclemlt (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))

Proof of Theorem prarloclemlt
StepHypRef Expression
1 2onn 6371 . . . . . . . . . . . 12 2o ∈ ω
2 nnacl 6330 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 2o ∈ ω) → (𝑦 +o 2o) ∈ ω)
31, 2mpan2 419 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 +o 2o) ∈ ω)
4 nnaword1 6363 . . . . . . . . . . 11 (((𝑦 +o 2o) ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +o 2o) ⊆ ((𝑦 +o 2o) +o 𝑋))
53, 4sylan 279 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +o 2o) ⊆ ((𝑦 +o 2o) +o 𝑋))
6 1oex 6275 . . . . . . . . . . . . . 14 1o ∈ V
76sucid 4299 . . . . . . . . . . . . 13 1o ∈ suc 1o
8 df-2o 6268 . . . . . . . . . . . . 13 2o = suc 1o
97, 8eleqtrri 2190 . . . . . . . . . . . 12 1o ∈ 2o
10 nnaordi 6358 . . . . . . . . . . . . 13 ((2o ∈ ω ∧ 𝑦 ∈ ω) → (1o ∈ 2o → (𝑦 +o 1o) ∈ (𝑦 +o 2o)))
111, 10mpan 418 . . . . . . . . . . . 12 (𝑦 ∈ ω → (1o ∈ 2o → (𝑦 +o 1o) ∈ (𝑦 +o 2o)))
129, 11mpi 15 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 +o 1o) ∈ (𝑦 +o 2o))
1312adantr 272 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +o 1o) ∈ (𝑦 +o 2o))
145, 13sseldd 3064 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +o 1o) ∈ ((𝑦 +o 2o) +o 𝑋))
1514ancoms 266 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o 1o) ∈ ((𝑦 +o 2o) +o 𝑋))
16 1pi 7071 . . . . . . . . . . 11 1oN
17 nnppipi 7099 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 1oN) → (𝑦 +o 1o) ∈ N)
1816, 17mpan2 419 . . . . . . . . . 10 (𝑦 ∈ ω → (𝑦 +o 1o) ∈ N)
1918adantl 273 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o 1o) ∈ N)
20 o1p1e2 6318 . . . . . . . . . . . . . 14 (1o +o 1o) = 2o
21 1onn 6370 . . . . . . . . . . . . . . 15 1o ∈ ω
22 nnppipi 7099 . . . . . . . . . . . . . . 15 ((1o ∈ ω ∧ 1oN) → (1o +o 1o) ∈ N)
2321, 16, 22mp2an 420 . . . . . . . . . . . . . 14 (1o +o 1o) ∈ N
2420, 23eqeltrri 2188 . . . . . . . . . . . . 13 2oN
25 nnppipi 7099 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 2oN) → (𝑦 +o 2o) ∈ N)
2624, 25mpan2 419 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝑦 +o 2o) ∈ N)
27 pinn 7065 . . . . . . . . . . . 12 ((𝑦 +o 2o) ∈ N → (𝑦 +o 2o) ∈ ω)
2826, 27syl 14 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 +o 2o) ∈ ω)
29 nnacom 6334 . . . . . . . . . . 11 ((𝑋 ∈ ω ∧ (𝑦 +o 2o) ∈ ω) → (𝑋 +o (𝑦 +o 2o)) = ((𝑦 +o 2o) +o 𝑋))
3028, 29sylan2 282 . . . . . . . . . 10 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑋 +o (𝑦 +o 2o)) = ((𝑦 +o 2o) +o 𝑋))
31 nnppipi 7099 . . . . . . . . . . 11 ((𝑋 ∈ ω ∧ (𝑦 +o 2o) ∈ N) → (𝑋 +o (𝑦 +o 2o)) ∈ N)
3226, 31sylan2 282 . . . . . . . . . 10 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑋 +o (𝑦 +o 2o)) ∈ N)
3330, 32eqeltrrd 2192 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +o 2o) +o 𝑋) ∈ N)
34 ltpiord 7075 . . . . . . . . 9 (((𝑦 +o 1o) ∈ N ∧ ((𝑦 +o 2o) +o 𝑋) ∈ N) → ((𝑦 +o 1o) <N ((𝑦 +o 2o) +o 𝑋) ↔ (𝑦 +o 1o) ∈ ((𝑦 +o 2o) +o 𝑋)))
3519, 33, 34syl2anc 406 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +o 1o) <N ((𝑦 +o 2o) +o 𝑋) ↔ (𝑦 +o 1o) ∈ ((𝑦 +o 2o) +o 𝑋)))
3615, 35mpbird 166 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o 1o) <N ((𝑦 +o 2o) +o 𝑋))
37 mulidpi 7074 . . . . . . . . 9 ((𝑦 +o 1o) ∈ N → ((𝑦 +o 1o) ·N 1o) = (𝑦 +o 1o))
3819, 37syl 14 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +o 1o) ·N 1o) = (𝑦 +o 1o))
39 mulcompig 7087 . . . . . . . . . 10 ((((𝑦 +o 2o) +o 𝑋) ∈ N ∧ 1oN) → (((𝑦 +o 2o) +o 𝑋) ·N 1o) = (1o ·N ((𝑦 +o 2o) +o 𝑋)))
4033, 16, 39sylancl 407 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (((𝑦 +o 2o) +o 𝑋) ·N 1o) = (1o ·N ((𝑦 +o 2o) +o 𝑋)))
41 mulidpi 7074 . . . . . . . . . 10 (((𝑦 +o 2o) +o 𝑋) ∈ N → (((𝑦 +o 2o) +o 𝑋) ·N 1o) = ((𝑦 +o 2o) +o 𝑋))
4233, 41syl 14 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (((𝑦 +o 2o) +o 𝑋) ·N 1o) = ((𝑦 +o 2o) +o 𝑋))
4340, 42eqtr3d 2149 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (1o ·N ((𝑦 +o 2o) +o 𝑋)) = ((𝑦 +o 2o) +o 𝑋))
4438, 43breq12d 3908 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋)) ↔ (𝑦 +o 1o) <N ((𝑦 +o 2o) +o 𝑋)))
4536, 44mpbird 166 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋)))
46 simpr 109 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω)
47 ordpipqqs 7130 . . . . . . . . . 10 ((((𝑦 +o 1o) ∈ N ∧ 1oN) ∧ (((𝑦 +o 2o) +o 𝑋) ∈ N ∧ 1oN)) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋))))
4816, 47mpanl2 429 . . . . . . . . 9 (((𝑦 +o 1o) ∈ N ∧ (((𝑦 +o 2o) +o 𝑋) ∈ N ∧ 1oN)) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋))))
4916, 48mpanr2 432 . . . . . . . 8 (((𝑦 +o 1o) ∈ N ∧ ((𝑦 +o 2o) +o 𝑋) ∈ N) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋))))
5018, 49sylan 279 . . . . . . 7 ((𝑦 ∈ ω ∧ ((𝑦 +o 2o) +o 𝑋) ∈ N) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋))))
5146, 33, 50syl2anc 406 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ ((𝑦 +o 1o) ·N 1o) <N (1o ·N ((𝑦 +o 2o) +o 𝑋))))
5245, 51mpbird 166 . . . . 5 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )
5352adantlr 466 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )
54 opelxpi 4531 . . . . . . . . 9 (((𝑦 +o 1o) ∈ N ∧ 1oN) → ⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N))
5519, 16, 54sylancl 407 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N))
56 enqex 7116 . . . . . . . . 9 ~Q ∈ V
5756ecelqsi 6437 . . . . . . . 8 (⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N) → [⟨(𝑦 +o 1o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
5855, 57syl 14 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
59 df-nqqs 7104 . . . . . . 7 Q = ((N × N) / ~Q )
6058, 59syl6eleqr 2208 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~QQ)
6160adantlr 466 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~QQ)
62 opelxpi 4531 . . . . . . . . 9 ((((𝑦 +o 2o) +o 𝑋) ∈ N ∧ 1oN) → ⟨((𝑦 +o 2o) +o 𝑋), 1o⟩ ∈ (N × N))
6333, 16, 62sylancl 407 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ⟨((𝑦 +o 2o) +o 𝑋), 1o⟩ ∈ (N × N))
6456ecelqsi 6437 . . . . . . . 8 (⟨((𝑦 +o 2o) +o 𝑋), 1o⟩ ∈ (N × N) → [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
6563, 64syl 14 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
6665, 59syl6eleqr 2208 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~QQ)
6766adantlr 466 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~QQ)
68 simplr3 1008 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝑃Q)
69 ltmnqg 7157 . . . . 5 (([⟨(𝑦 +o 1o), 1o⟩] ~QQ ∧ [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~QQ𝑃Q) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ (𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )))
7061, 67, 68, 69syl3anc 1199 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q <Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ↔ (𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )))
7153, 70mpbid 146 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ))
72 mulcomnqg 7139 . . . . 5 ((𝑃Q ∧ [⟨(𝑦 +o 1o), 1o⟩] ~QQ) → (𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃))
7368, 61, 72syl2anc 406 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃))
74 mulcomnqg 7139 . . . . 5 ((𝑃Q ∧ [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~QQ) → (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ) = ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
7568, 67, 74syl2anc 406 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ) = ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
7673, 75breq12d 3908 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝑃 ·Q [⟨(𝑦 +o 1o), 1o⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ) ↔ ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))
7771, 76mpbid 146 . 2 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
78 mulclnq 7132 . . . 4 (([⟨(𝑦 +o 1o), 1o⟩] ~QQ𝑃Q) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
7961, 68, 78syl2anc 406 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
80 mulclnq 7132 . . . 4 (([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~QQ𝑃Q) → ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
8167, 68, 80syl2anc 406 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
82 simplr1 1006 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ⟨𝐿, 𝑈⟩ ∈ P)
83 simplr2 1007 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝐴𝐿)
84 elprnql 7237 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) → 𝐴Q)
8582, 83, 84syl2anc 406 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝐴Q)
86 ltanqg 7156 . . 3 ((([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) ∈ Q ∧ ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) ∈ Q𝐴Q) → (([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) ↔ (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))))
8779, 81, 85, 86syl3anc 1199 . 2 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) ↔ (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))))
8877, 87mpbid 146 1 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 945   = wceq 1314  wcel 1463  wss 3037  cop 3496   class class class wbr 3895  suc csuc 4247  ωcom 4464   × cxp 4497  (class class class)co 5728  1oc1o 6260  2oc2o 6261   +o coa 6264  [cec 6381   / cqs 6382  Ncnpi 7028   ·N cmi 7030   <N clti 7031   ~Q ceq 7035  Qcnq 7036   +Q cplq 7038   ·Q cmq 7039   <Q cltq 7041  Pcnp 7047
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-eprel 4171  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-1o 6267  df-2o 6268  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7060  df-pli 7061  df-mi 7062  df-lti 7063  df-plpq 7100  df-mpq 7101  df-enq 7103  df-nqqs 7104  df-plqqs 7105  df-mqqs 7106  df-ltnqqs 7109  df-inp 7222
This theorem is referenced by:  prarloclem3step  7252
  Copyright terms: Public domain W3C validator