ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr2 GIF version

Theorem simplr2 1025
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr2 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜓)

Proof of Theorem simplr2
StepHypRef Expression
1 simpr2 989 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
21adantr 274 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 965
This theorem is referenced by:  prarloclemlt  7396  prarloclemlo  7397  seq3f1oleml  10384  resqrexlemdecn  10894  ennnfoneleminc  12112  restopnb  12541  cnptopresti  12598  blsscls2  12853
  Copyright terms: Public domain W3C validator