ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr2 GIF version

Theorem simplr2 1064
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr2 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜓)

Proof of Theorem simplr2
StepHypRef Expression
1 simpr2 1028 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
21adantr 276 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  prarloclemlt  7668  prarloclemlo  7669  seq3f1oleml  10725  ccatswrd  11188  resqrexlemdecn  11509  pcdvdstr  12836  ennnfoneleminc  12968  prdssgrpd  13434  prdsmndd  13467  grprcan  13556  mulgnn0dir  13675  lmodprop2d  14297  lssintclm  14333  psrbaglesuppg  14621  restopnb  14840  cnptopresti  14897  blsscls2  15152
  Copyright terms: Public domain W3C validator