ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr2 GIF version

Theorem simplr2 1042
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr2 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜓)

Proof of Theorem simplr2
StepHypRef Expression
1 simpr2 1006 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
21adantr 276 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  prarloclemlt  7577  prarloclemlo  7578  seq3f1oleml  10625  resqrexlemdecn  11194  pcdvdstr  12521  ennnfoneleminc  12653  prdssgrpd  13117  prdsmndd  13150  grprcan  13239  mulgnn0dir  13358  lmodprop2d  13980  lssintclm  14016  psrbaglesuppg  14302  restopnb  14501  cnptopresti  14558  blsscls2  14813
  Copyright terms: Public domain W3C validator