| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplr2 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simplr2 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr2 1028 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜓) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: prarloclemlt 7688 prarloclemlo 7689 seq3f1oleml 10746 ccatswrd 11210 resqrexlemdecn 11531 pcdvdstr 12858 ennnfoneleminc 12990 prdssgrpd 13456 prdsmndd 13489 grprcan 13578 mulgnn0dir 13697 lmodprop2d 14320 lssintclm 14356 psrbaglesuppg 14644 restopnb 14863 cnptopresti 14920 blsscls2 15175 |
| Copyright terms: Public domain | W3C validator |