ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr2 GIF version

Theorem simplr2 1042
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr2 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜓)

Proof of Theorem simplr2
StepHypRef Expression
1 simpr2 1006 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
21adantr 276 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  prarloclemlt  7579  prarloclemlo  7580  seq3f1oleml  10627  resqrexlemdecn  11196  pcdvdstr  12523  ennnfoneleminc  12655  prdssgrpd  13119  prdsmndd  13152  grprcan  13241  mulgnn0dir  13360  lmodprop2d  13982  lssintclm  14018  psrbaglesuppg  14306  restopnb  14525  cnptopresti  14582  blsscls2  14837
  Copyright terms: Public domain W3C validator