ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr2 GIF version

Theorem simplr2 1043
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr2 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜓)

Proof of Theorem simplr2
StepHypRef Expression
1 simpr2 1007 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
21adantr 276 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  prarloclemlt  7613  prarloclemlo  7614  seq3f1oleml  10668  ccatswrd  11131  resqrexlemdecn  11367  pcdvdstr  12694  ennnfoneleminc  12826  prdssgrpd  13291  prdsmndd  13324  grprcan  13413  mulgnn0dir  13532  lmodprop2d  14154  lssintclm  14190  psrbaglesuppg  14478  restopnb  14697  cnptopresti  14754  blsscls2  15009
  Copyright terms: Public domain W3C validator