Step | Hyp | Ref
| Expression |
1 | | th3q.2 |
. . 3
⊢ ∼ Er
(𝑆 × 𝑆) |
2 | | eqid 2177 |
. . . . 5
⊢ (𝑆 × 𝑆) = (𝑆 × 𝑆) |
3 | | breq1 4008 |
. . . . . . . 8
⊢
(⟨𝑤, 𝑣⟩ = 𝑠 → (⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ↔ 𝑠 ∼ ⟨𝑢, 𝑡⟩)) |
4 | 3 | anbi1d 465 |
. . . . . . 7
⊢
(⟨𝑤, 𝑣⟩ = 𝑠 → ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ 𝑦) ↔ (𝑠 ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ 𝑦))) |
5 | | oveq1 5884 |
. . . . . . . 8
⊢
(⟨𝑤, 𝑣⟩ = 𝑠 → (⟨𝑤, 𝑣⟩ + 𝑥) = (𝑠 + 𝑥)) |
6 | 5 | breq1d 4015 |
. . . . . . 7
⊢
(⟨𝑤, 𝑣⟩ = 𝑠 → ((⟨𝑤, 𝑣⟩ + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + 𝑦) ↔ (𝑠 + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + 𝑦))) |
7 | 4, 6 | imbi12d 234 |
. . . . . 6
⊢
(⟨𝑤, 𝑣⟩ = 𝑠 → (((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ 𝑦) → (⟨𝑤, 𝑣⟩ + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + 𝑦)) ↔ ((𝑠 ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ 𝑦) → (𝑠 + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + 𝑦)))) |
8 | 7 | imbi2d 230 |
. . . . 5
⊢
(⟨𝑤, 𝑣⟩ = 𝑠 → (((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) → ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ 𝑦) → (⟨𝑤, 𝑣⟩ + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + 𝑦))) ↔ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) → ((𝑠 ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ 𝑦) → (𝑠 + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + 𝑦))))) |
9 | | breq2 4009 |
. . . . . . . 8
⊢
(⟨𝑢, 𝑡⟩ = 𝑓 → (𝑠 ∼ ⟨𝑢, 𝑡⟩ ↔ 𝑠 ∼ 𝑓)) |
10 | 9 | anbi1d 465 |
. . . . . . 7
⊢
(⟨𝑢, 𝑡⟩ = 𝑓 → ((𝑠 ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ 𝑦) ↔ (𝑠 ∼ 𝑓 ∧ 𝑥 ∼ 𝑦))) |
11 | | oveq1 5884 |
. . . . . . . 8
⊢
(⟨𝑢, 𝑡⟩ = 𝑓 → (⟨𝑢, 𝑡⟩ + 𝑦) = (𝑓 + 𝑦)) |
12 | 11 | breq2d 4017 |
. . . . . . 7
⊢
(⟨𝑢, 𝑡⟩ = 𝑓 → ((𝑠 + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + 𝑦) ↔ (𝑠 + 𝑥) ∼ (𝑓 + 𝑦))) |
13 | 10, 12 | imbi12d 234 |
. . . . . 6
⊢
(⟨𝑢, 𝑡⟩ = 𝑓 → (((𝑠 ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ 𝑦) → (𝑠 + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + 𝑦)) ↔ ((𝑠 ∼ 𝑓 ∧ 𝑥 ∼ 𝑦) → (𝑠 + 𝑥) ∼ (𝑓 + 𝑦)))) |
14 | 13 | imbi2d 230 |
. . . . 5
⊢
(⟨𝑢, 𝑡⟩ = 𝑓 → (((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) → ((𝑠 ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ 𝑦) → (𝑠 + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + 𝑦))) ↔ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) → ((𝑠 ∼ 𝑓 ∧ 𝑥 ∼ 𝑦) → (𝑠 + 𝑥) ∼ (𝑓 + 𝑦))))) |
15 | | breq1 4008 |
. . . . . . . . . 10
⊢
(⟨𝑠, 𝑓⟩ = 𝑥 → (⟨𝑠, 𝑓⟩ ∼ ⟨𝑔, ℎ⟩ ↔ 𝑥 ∼ ⟨𝑔, ℎ⟩)) |
16 | 15 | anbi2d 464 |
. . . . . . . . 9
⊢
(⟨𝑠, 𝑓⟩ = 𝑥 → ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑠, 𝑓⟩ ∼ ⟨𝑔, ℎ⟩) ↔ (⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ ⟨𝑔, ℎ⟩))) |
17 | | oveq2 5885 |
. . . . . . . . . 10
⊢
(⟨𝑠, 𝑓⟩ = 𝑥 → (⟨𝑤, 𝑣⟩ + ⟨𝑠, 𝑓⟩) = (⟨𝑤, 𝑣⟩ + 𝑥)) |
18 | 17 | breq1d 4015 |
. . . . . . . . 9
⊢
(⟨𝑠, 𝑓⟩ = 𝑥 → ((⟨𝑤, 𝑣⟩ + ⟨𝑠, 𝑓⟩) ∼ (⟨𝑢, 𝑡⟩ + ⟨𝑔, ℎ⟩) ↔ (⟨𝑤, 𝑣⟩ + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + ⟨𝑔, ℎ⟩))) |
19 | 16, 18 | imbi12d 234 |
. . . . . . . 8
⊢
(⟨𝑠, 𝑓⟩ = 𝑥 → (((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑠, 𝑓⟩ ∼ ⟨𝑔, ℎ⟩) → (⟨𝑤, 𝑣⟩ + ⟨𝑠, 𝑓⟩) ∼ (⟨𝑢, 𝑡⟩ + ⟨𝑔, ℎ⟩)) ↔ ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ ⟨𝑔, ℎ⟩) → (⟨𝑤, 𝑣⟩ + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + ⟨𝑔, ℎ⟩)))) |
20 | 19 | imbi2d 230 |
. . . . . . 7
⊢
(⟨𝑠, 𝑓⟩ = 𝑥 → ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) → ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑠, 𝑓⟩ ∼ ⟨𝑔, ℎ⟩) → (⟨𝑤, 𝑣⟩ + ⟨𝑠, 𝑓⟩) ∼ (⟨𝑢, 𝑡⟩ + ⟨𝑔, ℎ⟩))) ↔ (((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) → ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ ⟨𝑔, ℎ⟩) → (⟨𝑤, 𝑣⟩ + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + ⟨𝑔, ℎ⟩))))) |
21 | | breq2 4009 |
. . . . . . . . . 10
⊢
(⟨𝑔, ℎ⟩ = 𝑦 → (𝑥 ∼ ⟨𝑔, ℎ⟩ ↔ 𝑥 ∼ 𝑦)) |
22 | 21 | anbi2d 464 |
. . . . . . . . 9
⊢
(⟨𝑔, ℎ⟩ = 𝑦 → ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ ⟨𝑔, ℎ⟩) ↔ (⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ 𝑦))) |
23 | | oveq2 5885 |
. . . . . . . . . 10
⊢
(⟨𝑔, ℎ⟩ = 𝑦 → (⟨𝑢, 𝑡⟩ + ⟨𝑔, ℎ⟩) = (⟨𝑢, 𝑡⟩ + 𝑦)) |
24 | 23 | breq2d 4017 |
. . . . . . . . 9
⊢
(⟨𝑔, ℎ⟩ = 𝑦 → ((⟨𝑤, 𝑣⟩ + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + ⟨𝑔, ℎ⟩) ↔ (⟨𝑤, 𝑣⟩ + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + 𝑦))) |
25 | 22, 24 | imbi12d 234 |
. . . . . . . 8
⊢
(⟨𝑔, ℎ⟩ = 𝑦 → (((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ ⟨𝑔, ℎ⟩) → (⟨𝑤, 𝑣⟩ + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + ⟨𝑔, ℎ⟩)) ↔ ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ 𝑦) → (⟨𝑤, 𝑣⟩ + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + 𝑦)))) |
26 | 25 | imbi2d 230 |
. . . . . . 7
⊢
(⟨𝑔, ℎ⟩ = 𝑦 → ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) → ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ ⟨𝑔, ℎ⟩) → (⟨𝑤, 𝑣⟩ + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + ⟨𝑔, ℎ⟩))) ↔ (((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) → ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ 𝑦) → (⟨𝑤, 𝑣⟩ + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + 𝑦))))) |
27 | | th3q.4 |
. . . . . . . 8
⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑠, 𝑓⟩ ∼ ⟨𝑔, ℎ⟩) → (⟨𝑤, 𝑣⟩ + ⟨𝑠, 𝑓⟩) ∼ (⟨𝑢, 𝑡⟩ + ⟨𝑔, ℎ⟩))) |
28 | 27 | expcom 116 |
. . . . . . 7
⊢ (((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → (((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) → ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑠, 𝑓⟩ ∼ ⟨𝑔, ℎ⟩) → (⟨𝑤, 𝑣⟩ + ⟨𝑠, 𝑓⟩) ∼ (⟨𝑢, 𝑡⟩ + ⟨𝑔, ℎ⟩)))) |
29 | 2, 20, 26, 28 | 2optocl 4705 |
. . . . . 6
⊢ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) → (((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) → ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ 𝑦) → (⟨𝑤, 𝑣⟩ + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + 𝑦)))) |
30 | 29 | com12 30 |
. . . . 5
⊢ (((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) → ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) → ((⟨𝑤, 𝑣⟩ ∼ ⟨𝑢, 𝑡⟩ ∧ 𝑥 ∼ 𝑦) → (⟨𝑤, 𝑣⟩ + 𝑥) ∼ (⟨𝑢, 𝑡⟩ + 𝑦)))) |
31 | 2, 8, 14, 30 | 2optocl 4705 |
. . . 4
⊢ ((𝑠 ∈ (𝑆 × 𝑆) ∧ 𝑓 ∈ (𝑆 × 𝑆)) → ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) → ((𝑠 ∼ 𝑓 ∧ 𝑥 ∼ 𝑦) → (𝑠 + 𝑥) ∼ (𝑓 + 𝑦)))) |
32 | 31 | imp 124 |
. . 3
⊢ (((𝑠 ∈ (𝑆 × 𝑆) ∧ 𝑓 ∈ (𝑆 × 𝑆)) ∧ (𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆))) → ((𝑠 ∼ 𝑓 ∧ 𝑥 ∼ 𝑦) → (𝑠 + 𝑥) ∼ (𝑓 + 𝑦))) |
33 | 1, 32 | th3qlem1 6639 |
. 2
⊢ ((𝐴 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝐵 ∈ ((𝑆 × 𝑆) / ∼ )) →
∃*𝑧∃𝑠∃𝑥((𝐴 = [𝑠] ∼ ∧ 𝐵 = [𝑥] ∼ ) ∧ 𝑧 = [(𝑠 + 𝑥)] ∼ )) |
34 | | vex 2742 |
. . . . . . 7
⊢ 𝑤 ∈ V |
35 | | vex 2742 |
. . . . . . 7
⊢ 𝑣 ∈ V |
36 | 34, 35 | opex 4231 |
. . . . . 6
⊢
⟨𝑤, 𝑣⟩ ∈ V |
37 | | vex 2742 |
. . . . . . 7
⊢ 𝑢 ∈ V |
38 | | vex 2742 |
. . . . . . 7
⊢ 𝑡 ∈ V |
39 | 37, 38 | opex 4231 |
. . . . . 6
⊢
⟨𝑢, 𝑡⟩ ∈ V |
40 | | eceq1 6572 |
. . . . . . . . 9
⊢ (𝑠 = ⟨𝑤, 𝑣⟩ → [𝑠] ∼ = [⟨𝑤, 𝑣⟩] ∼ ) |
41 | 40 | eqeq2d 2189 |
. . . . . . . 8
⊢ (𝑠 = ⟨𝑤, 𝑣⟩ → (𝐴 = [𝑠] ∼ ↔ 𝐴 = [⟨𝑤, 𝑣⟩] ∼ )) |
42 | | eceq1 6572 |
. . . . . . . . 9
⊢ (𝑥 = ⟨𝑢, 𝑡⟩ → [𝑥] ∼ = [⟨𝑢, 𝑡⟩] ∼ ) |
43 | 42 | eqeq2d 2189 |
. . . . . . . 8
⊢ (𝑥 = ⟨𝑢, 𝑡⟩ → (𝐵 = [𝑥] ∼ ↔ 𝐵 = [⟨𝑢, 𝑡⟩] ∼ )) |
44 | 41, 43 | bi2anan9 606 |
. . . . . . 7
⊢ ((𝑠 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = ⟨𝑢, 𝑡⟩) → ((𝐴 = [𝑠] ∼ ∧ 𝐵 = [𝑥] ∼ ) ↔ (𝐴 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝐵 = [⟨𝑢, 𝑡⟩] ∼
))) |
45 | | oveq12 5886 |
. . . . . . . . 9
⊢ ((𝑠 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = ⟨𝑢, 𝑡⟩) → (𝑠 + 𝑥) = (⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)) |
46 | 45 | eceq1d 6573 |
. . . . . . . 8
⊢ ((𝑠 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = ⟨𝑢, 𝑡⟩) → [(𝑠 + 𝑥)] ∼ = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ) |
47 | 46 | eqeq2d 2189 |
. . . . . . 7
⊢ ((𝑠 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = ⟨𝑢, 𝑡⟩) → (𝑧 = [(𝑠 + 𝑥)] ∼ ↔ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ )) |
48 | 44, 47 | anbi12d 473 |
. . . . . 6
⊢ ((𝑠 = ⟨𝑤, 𝑣⟩ ∧ 𝑥 = ⟨𝑢, 𝑡⟩) → (((𝐴 = [𝑠] ∼ ∧ 𝐵 = [𝑥] ∼ ) ∧ 𝑧 = [(𝑠 + 𝑥)] ∼ ) ↔ ((𝐴 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝐵 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼
))) |
49 | 36, 39, 48 | spc2ev 2835 |
. . . . 5
⊢ (((𝐴 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝐵 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ) →
∃𝑠∃𝑥((𝐴 = [𝑠] ∼ ∧ 𝐵 = [𝑥] ∼ ) ∧ 𝑧 = [(𝑠 + 𝑥)] ∼ )) |
50 | 49 | exlimivv 1896 |
. . . 4
⊢
(∃𝑢∃𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝐵 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ) →
∃𝑠∃𝑥((𝐴 = [𝑠] ∼ ∧ 𝐵 = [𝑥] ∼ ) ∧ 𝑧 = [(𝑠 + 𝑥)] ∼ )) |
51 | 50 | exlimivv 1896 |
. . 3
⊢
(∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝐵 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ ) →
∃𝑠∃𝑥((𝐴 = [𝑠] ∼ ∧ 𝐵 = [𝑥] ∼ ) ∧ 𝑧 = [(𝑠 + 𝑥)] ∼ )) |
52 | 51 | moimi 2091 |
. 2
⊢
(∃*𝑧∃𝑠∃𝑥((𝐴 = [𝑠] ∼ ∧ 𝐵 = [𝑥] ∼ ) ∧ 𝑧 = [(𝑠 + 𝑥)] ∼ ) →
∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝐵 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ )) |
53 | 33, 52 | syl 14 |
1
⊢ ((𝐴 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝐵 ∈ ((𝑆 × 𝑆) / ∼ )) →
∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ∼ ∧ 𝐵 = [⟨𝑢, 𝑡⟩] ∼ ) ∧ 𝑧 = [(⟨𝑤, 𝑣⟩ + ⟨𝑢, 𝑡⟩)] ∼ )) |