ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcev GIF version

Theorem spcev 2855
Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
Hypotheses
Ref Expression
spcv.1 𝐴 ∈ V
spcv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcev (𝜓 → ∃𝑥𝜑)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem spcev
StepHypRef Expression
1 spcv.1 . 2 𝐴 ∈ V
2 spcv.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32spcegv 2848 . 2 (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑))
41, 3ax-mp 5 1 (𝜓 → ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762
This theorem is referenced by:  bnd2  4202  mss  4255  exss  4256  snnex  4479  opeldm  4865  elrnmpt1  4913  xpmlem  5086  ffoss  5532  ssimaex  5618  fvelrn  5689  eufnfv  5789  foeqcnvco  5833  cnvoprab  6287  domtr  6839  ensn1  6850  ac6sfi  6954  difinfsn  7159  0ct  7166  ctmlemr  7167  ctssdclemn0  7169  ctssdclemr  7171  ctssdc  7172  omct  7176  ctssexmid  7209  exmidfodomrlemim  7261  cc3  7328  zfz1iso  10912  fprodntrivap  11727  nninfct  12178  ennnfonelemim  12581  ctinfom  12585  ctinf  12587  qnnen  12588  enctlem  12589  ctiunct  12597  nninfdc  12610  subctctexmid  15491
  Copyright terms: Public domain W3C validator