ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcev GIF version

Theorem spcev 2859
Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
Hypotheses
Ref Expression
spcv.1 𝐴 ∈ V
spcv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcev (𝜓 → ∃𝑥𝜑)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem spcev
StepHypRef Expression
1 spcv.1 . 2 𝐴 ∈ V
2 spcv.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32spcegv 2852 . 2 (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑))
41, 3ax-mp 5 1 (𝜓 → ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  bnd2  4207  mss  4260  exss  4261  snnex  4484  opeldm  4870  elrnmpt1  4918  xpmlem  5091  ffoss  5539  ssimaex  5625  fvelrn  5696  eufnfv  5796  foeqcnvco  5840  cnvoprab  6301  domtr  6853  ensn1  6864  ac6sfi  6968  difinfsn  7175  0ct  7182  ctmlemr  7183  ctssdclemn0  7185  ctssdclemr  7187  ctssdc  7188  omct  7192  ctssexmid  7225  exmidfodomrlemim  7280  cc3  7351  zfz1iso  10950  fprodntrivap  11766  nninfct  12233  ennnfonelemim  12666  ctinfom  12670  ctinf  12672  qnnen  12673  enctlem  12674  ctiunct  12682  nninfdc  12695  subctctexmid  15731  domomsubct  15732
  Copyright terms: Public domain W3C validator