| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcev | GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
| Ref | Expression |
|---|---|
| spcv.1 | ⊢ 𝐴 ∈ V |
| spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcev | ⊢ (𝜓 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | spcegv 2891 | . 2 ⊢ (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝜓 → ∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: bnd2 4256 mss 4311 exss 4312 snnex 4538 opeldm 4925 elrnmpt1 4974 xpmlem 5148 ffoss 5603 ssimaex 5694 fvelrn 5765 funopsn 5816 eufnfv 5869 foeqcnvco 5913 cnvoprab 6378 domtr 6935 ensn1 6946 ac6sfi 7056 difinfsn 7263 0ct 7270 ctmlemr 7271 ctssdclemn0 7273 ctssdclemr 7275 ctssdc 7276 omct 7280 ctssexmid 7313 exmidfodomrlemim 7375 cc3 7450 zfz1iso 11058 fprodntrivap 12090 nninfct 12557 ennnfonelemim 12990 ctinfom 12994 ctinf 12996 qnnen 12997 enctlem 12998 ctiunct 13006 nninfdc 13019 subctctexmid 16325 domomsubct 16326 |
| Copyright terms: Public domain | W3C validator |