![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spcev | GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
Ref | Expression |
---|---|
spcv.1 | ⊢ 𝐴 ∈ V |
spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcev | ⊢ (𝜓 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | spcegv 2848 | . 2 ⊢ (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝜓 → ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 |
This theorem is referenced by: bnd2 4202 mss 4255 exss 4256 snnex 4479 opeldm 4865 elrnmpt1 4913 xpmlem 5086 ffoss 5532 ssimaex 5618 fvelrn 5689 eufnfv 5789 foeqcnvco 5833 cnvoprab 6287 domtr 6839 ensn1 6850 ac6sfi 6954 difinfsn 7159 0ct 7166 ctmlemr 7167 ctssdclemn0 7169 ctssdclemr 7171 ctssdc 7172 omct 7176 ctssexmid 7209 exmidfodomrlemim 7261 cc3 7328 zfz1iso 10912 fprodntrivap 11727 nninfct 12178 ennnfonelemim 12581 ctinfom 12585 ctinf 12587 qnnen 12588 enctlem 12589 ctiunct 12597 nninfdc 12610 subctctexmid 15491 |
Copyright terms: Public domain | W3C validator |