| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcev | GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
| Ref | Expression |
|---|---|
| spcv.1 | ⊢ 𝐴 ∈ V |
| spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcev | ⊢ (𝜓 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | spcegv 2860 | . 2 ⊢ (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝜓 → ∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∃wex 1514 ∈ wcel 2175 Vcvv 2771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 |
| This theorem is referenced by: bnd2 4216 mss 4269 exss 4270 snnex 4494 opeldm 4880 elrnmpt1 4928 xpmlem 5102 ffoss 5553 ssimaex 5639 fvelrn 5710 funopsn 5761 eufnfv 5814 foeqcnvco 5858 cnvoprab 6319 domtr 6876 ensn1 6887 ac6sfi 6994 difinfsn 7201 0ct 7208 ctmlemr 7209 ctssdclemn0 7211 ctssdclemr 7213 ctssdc 7214 omct 7218 ctssexmid 7251 exmidfodomrlemim 7308 cc3 7379 zfz1iso 10984 fprodntrivap 11837 nninfct 12304 ennnfonelemim 12737 ctinfom 12741 ctinf 12743 qnnen 12744 enctlem 12745 ctiunct 12753 nninfdc 12766 subctctexmid 15870 domomsubct 15871 |
| Copyright terms: Public domain | W3C validator |