Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcev | GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
Ref | Expression |
---|---|
spcv.1 | ⊢ 𝐴 ∈ V |
spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcev | ⊢ (𝜓 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | spcegv 2813 | . 2 ⊢ (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝜓 → ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 |
This theorem is referenced by: bnd2 4151 mss 4203 exss 4204 snnex 4425 opeldm 4806 elrnmpt1 4854 xpmlem 5023 ffoss 5463 ssimaex 5546 fvelrn 5615 eufnfv 5714 foeqcnvco 5757 cnvoprab 6198 domtr 6747 ensn1 6758 ac6sfi 6860 difinfsn 7061 0ct 7068 ctmlemr 7069 ctssdclemn0 7071 ctssdclemr 7073 ctssdc 7074 omct 7078 ctssexmid 7110 exmidfodomrlemim 7153 cc3 7205 zfz1iso 10750 fprodntrivap 11521 ennnfonelemim 12353 ctinfom 12357 ctinf 12359 qnnen 12360 enctlem 12361 ctiunct 12369 nninfdc 12382 subctctexmid 13841 |
Copyright terms: Public domain | W3C validator |