| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcev | GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
| Ref | Expression |
|---|---|
| spcv.1 | ⊢ 𝐴 ∈ V |
| spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcev | ⊢ (𝜓 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | spcegv 2852 | . 2 ⊢ (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝜓 → ∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: bnd2 4207 mss 4260 exss 4261 snnex 4484 opeldm 4870 elrnmpt1 4918 xpmlem 5091 ffoss 5539 ssimaex 5625 fvelrn 5696 eufnfv 5796 foeqcnvco 5840 cnvoprab 6301 domtr 6853 ensn1 6864 ac6sfi 6968 difinfsn 7175 0ct 7182 ctmlemr 7183 ctssdclemn0 7185 ctssdclemr 7187 ctssdc 7188 omct 7192 ctssexmid 7225 exmidfodomrlemim 7280 cc3 7351 zfz1iso 10950 fprodntrivap 11766 nninfct 12233 ennnfonelemim 12666 ctinfom 12670 ctinf 12672 qnnen 12673 enctlem 12674 ctiunct 12682 nninfdc 12695 subctctexmid 15731 domomsubct 15732 |
| Copyright terms: Public domain | W3C validator |