Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcev | GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
Ref | Expression |
---|---|
spcv.1 | ⊢ 𝐴 ∈ V |
spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcev | ⊢ (𝜓 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | spcegv 2800 | . 2 ⊢ (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝜓 → ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1335 ∃wex 1472 ∈ wcel 2128 Vcvv 2712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 |
This theorem is referenced by: bnd2 4133 mss 4185 exss 4186 snnex 4406 opeldm 4786 elrnmpt1 4834 xpmlem 5003 ffoss 5443 ssimaex 5526 fvelrn 5595 eufnfv 5692 foeqcnvco 5735 cnvoprab 6175 domtr 6723 ensn1 6734 ac6sfi 6836 difinfsn 7034 0ct 7041 ctmlemr 7042 ctssdclemn0 7044 ctssdclemr 7046 ctssdc 7047 omct 7051 ctssexmid 7076 exmidfodomrlemim 7119 cc3 7171 zfz1iso 10694 fprodntrivap 11463 ennnfonelemim 12125 ctinfom 12129 ctinf 12131 qnnen 12132 enctlem 12133 ctiunct 12141 subctctexmid 13533 |
Copyright terms: Public domain | W3C validator |