ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endisj GIF version

Theorem endisj 6494
Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.)
Hypotheses
Ref Expression
endisj.1 𝐴 ∈ V
endisj.2 𝐵 ∈ V
Assertion
Ref Expression
endisj 𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem endisj
StepHypRef Expression
1 endisj.1 . . . 4 𝐴 ∈ V
2 0ex 3943 . . . 4 ∅ ∈ V
31, 2xpsnen 6491 . . 3 (𝐴 × {∅}) ≈ 𝐴
4 endisj.2 . . . 4 𝐵 ∈ V
5 1on 6144 . . . . 5 1𝑜 ∈ On
65elexi 2625 . . . 4 1𝑜 ∈ V
74, 6xpsnen 6491 . . 3 (𝐵 × {1𝑜}) ≈ 𝐵
83, 7pm3.2i 266 . 2 ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1𝑜}) ≈ 𝐵)
9 xp01disj 6154 . 2 ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅
10 p0ex 3999 . . . 4 {∅} ∈ V
111, 10xpex 4523 . . 3 (𝐴 × {∅}) ∈ V
126snex 3996 . . . 4 {1𝑜} ∈ V
134, 12xpex 4523 . . 3 (𝐵 × {1𝑜}) ∈ V
14 breq1 3825 . . . . 5 (𝑥 = (𝐴 × {∅}) → (𝑥𝐴 ↔ (𝐴 × {∅}) ≈ 𝐴))
15 breq1 3825 . . . . 5 (𝑦 = (𝐵 × {1𝑜}) → (𝑦𝐵 ↔ (𝐵 × {1𝑜}) ≈ 𝐵))
1614, 15bi2anan9 571 . . . 4 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1𝑜})) → ((𝑥𝐴𝑦𝐵) ↔ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1𝑜}) ≈ 𝐵)))
17 ineq12 3185 . . . . 5 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1𝑜})) → (𝑥𝑦) = ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})))
1817eqeq1d 2093 . . . 4 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1𝑜})) → ((𝑥𝑦) = ∅ ↔ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅))
1916, 18anbi12d 457 . . 3 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1𝑜})) → (((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅) ↔ (((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1𝑜}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅)))
2011, 13, 19spc2ev 2707 . 2 ((((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1𝑜}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅) → ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅))
218, 9, 20mp2an 417 1 𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅)
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1287  wex 1424  wcel 1436  Vcvv 2615  cin 2987  c0 3275  {csn 3431   class class class wbr 3822  Oncon0 4166   × cxp 4411  1𝑜c1o 6130  cen 6409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-v 2617  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-br 3823  df-opab 3877  df-mpt 3878  df-tr 3914  df-id 4096  df-iord 4169  df-on 4171  df-suc 4174  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-1o 6137  df-en 6412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator