| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > endisj | GIF version | ||
| Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.) |
| Ref | Expression |
|---|---|
| endisj.1 | ⊢ 𝐴 ∈ V |
| endisj.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| endisj | ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endisj.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 0ex 4170 | . . . 4 ⊢ ∅ ∈ V | |
| 3 | 1, 2 | xpsnen 6898 | . . 3 ⊢ (𝐴 × {∅}) ≈ 𝐴 |
| 4 | endisj.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 5 | 1on 6499 | . . . . 5 ⊢ 1o ∈ On | |
| 6 | 5 | elexi 2783 | . . . 4 ⊢ 1o ∈ V |
| 7 | 4, 6 | xpsnen 6898 | . . 3 ⊢ (𝐵 × {1o}) ≈ 𝐵 |
| 8 | 3, 7 | pm3.2i 272 | . 2 ⊢ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) |
| 9 | xp01disj 6509 | . 2 ⊢ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅ | |
| 10 | p0ex 4231 | . . . 4 ⊢ {∅} ∈ V | |
| 11 | 1, 10 | xpex 4788 | . . 3 ⊢ (𝐴 × {∅}) ∈ V |
| 12 | 6 | snex 4228 | . . . 4 ⊢ {1o} ∈ V |
| 13 | 4, 12 | xpex 4788 | . . 3 ⊢ (𝐵 × {1o}) ∈ V |
| 14 | breq1 4046 | . . . . 5 ⊢ (𝑥 = (𝐴 × {∅}) → (𝑥 ≈ 𝐴 ↔ (𝐴 × {∅}) ≈ 𝐴)) | |
| 15 | breq1 4046 | . . . . 5 ⊢ (𝑦 = (𝐵 × {1o}) → (𝑦 ≈ 𝐵 ↔ (𝐵 × {1o}) ≈ 𝐵)) | |
| 16 | 14, 15 | bi2anan9 606 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ↔ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵))) |
| 17 | ineq12 3368 | . . . . 5 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (𝑥 ∩ 𝑦) = ((𝐴 × {∅}) ∩ (𝐵 × {1o}))) | |
| 18 | 17 | eqeq1d 2213 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥 ∩ 𝑦) = ∅ ↔ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅)) |
| 19 | 16, 18 | anbi12d 473 | . . 3 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅))) |
| 20 | 11, 13, 19 | spc2ev 2868 | . 2 ⊢ ((((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅) → ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅)) |
| 21 | 8, 9, 20 | mp2an 426 | 1 ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1372 ∃wex 1514 ∈ wcel 2175 Vcvv 2771 ∩ cin 3164 ∅c0 3459 {csn 3632 class class class wbr 4043 Oncon0 4408 × cxp 4671 1oc1o 6485 ≈ cen 6815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-suc 4416 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-1o 6492 df-en 6818 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |