![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > endisj | GIF version |
Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.) |
Ref | Expression |
---|---|
endisj.1 | ⊢ 𝐴 ∈ V |
endisj.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
endisj | ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endisj.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 0ex 4132 | . . . 4 ⊢ ∅ ∈ V | |
3 | 1, 2 | xpsnen 6823 | . . 3 ⊢ (𝐴 × {∅}) ≈ 𝐴 |
4 | endisj.2 | . . . 4 ⊢ 𝐵 ∈ V | |
5 | 1on 6426 | . . . . 5 ⊢ 1o ∈ On | |
6 | 5 | elexi 2751 | . . . 4 ⊢ 1o ∈ V |
7 | 4, 6 | xpsnen 6823 | . . 3 ⊢ (𝐵 × {1o}) ≈ 𝐵 |
8 | 3, 7 | pm3.2i 272 | . 2 ⊢ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) |
9 | xp01disj 6436 | . 2 ⊢ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅ | |
10 | p0ex 4190 | . . . 4 ⊢ {∅} ∈ V | |
11 | 1, 10 | xpex 4743 | . . 3 ⊢ (𝐴 × {∅}) ∈ V |
12 | 6 | snex 4187 | . . . 4 ⊢ {1o} ∈ V |
13 | 4, 12 | xpex 4743 | . . 3 ⊢ (𝐵 × {1o}) ∈ V |
14 | breq1 4008 | . . . . 5 ⊢ (𝑥 = (𝐴 × {∅}) → (𝑥 ≈ 𝐴 ↔ (𝐴 × {∅}) ≈ 𝐴)) | |
15 | breq1 4008 | . . . . 5 ⊢ (𝑦 = (𝐵 × {1o}) → (𝑦 ≈ 𝐵 ↔ (𝐵 × {1o}) ≈ 𝐵)) | |
16 | 14, 15 | bi2anan9 606 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ↔ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵))) |
17 | ineq12 3333 | . . . . 5 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (𝑥 ∩ 𝑦) = ((𝐴 × {∅}) ∩ (𝐵 × {1o}))) | |
18 | 17 | eqeq1d 2186 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥 ∩ 𝑦) = ∅ ↔ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅)) |
19 | 16, 18 | anbi12d 473 | . . 3 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅))) |
20 | 11, 13, 19 | spc2ev 2835 | . 2 ⊢ ((((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅) → ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅)) |
21 | 8, 9, 20 | mp2an 426 | 1 ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 ∩ cin 3130 ∅c0 3424 {csn 3594 class class class wbr 4005 Oncon0 4365 × cxp 4626 1oc1o 6412 ≈ cen 6740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-1o 6419 df-en 6743 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |