ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endisj GIF version

Theorem endisj 6934
Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.)
Hypotheses
Ref Expression
endisj.1 𝐴 ∈ V
endisj.2 𝐵 ∈ V
Assertion
Ref Expression
endisj 𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem endisj
StepHypRef Expression
1 endisj.1 . . . 4 𝐴 ∈ V
2 0ex 4179 . . . 4 ∅ ∈ V
31, 2xpsnen 6931 . . 3 (𝐴 × {∅}) ≈ 𝐴
4 endisj.2 . . . 4 𝐵 ∈ V
5 1on 6522 . . . . 5 1o ∈ On
65elexi 2786 . . . 4 1o ∈ V
74, 6xpsnen 6931 . . 3 (𝐵 × {1o}) ≈ 𝐵
83, 7pm3.2i 272 . 2 ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵)
9 xp01disj 6532 . 2 ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅
10 p0ex 4240 . . . 4 {∅} ∈ V
111, 10xpex 4798 . . 3 (𝐴 × {∅}) ∈ V
126snex 4237 . . . 4 {1o} ∈ V
134, 12xpex 4798 . . 3 (𝐵 × {1o}) ∈ V
14 breq1 4054 . . . . 5 (𝑥 = (𝐴 × {∅}) → (𝑥𝐴 ↔ (𝐴 × {∅}) ≈ 𝐴))
15 breq1 4054 . . . . 5 (𝑦 = (𝐵 × {1o}) → (𝑦𝐵 ↔ (𝐵 × {1o}) ≈ 𝐵))
1614, 15bi2anan9 606 . . . 4 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥𝐴𝑦𝐵) ↔ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵)))
17 ineq12 3373 . . . . 5 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (𝑥𝑦) = ((𝐴 × {∅}) ∩ (𝐵 × {1o})))
1817eqeq1d 2215 . . . 4 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥𝑦) = ∅ ↔ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅))
1916, 18anbi12d 473 . . 3 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅) ↔ (((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅)))
2011, 13, 19spc2ev 2873 . 2 ((((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅) → ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅))
218, 9, 20mp2an 426 1 𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773  cin 3169  c0 3464  {csn 3638   class class class wbr 4051  Oncon0 4418   × cxp 4681  1oc1o 6508  cen 6838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-1o 6515  df-en 6841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator