| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > endisj | GIF version | ||
| Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.) |
| Ref | Expression |
|---|---|
| endisj.1 | ⊢ 𝐴 ∈ V |
| endisj.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| endisj | ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endisj.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 0ex 4179 | . . . 4 ⊢ ∅ ∈ V | |
| 3 | 1, 2 | xpsnen 6931 | . . 3 ⊢ (𝐴 × {∅}) ≈ 𝐴 |
| 4 | endisj.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 5 | 1on 6522 | . . . . 5 ⊢ 1o ∈ On | |
| 6 | 5 | elexi 2786 | . . . 4 ⊢ 1o ∈ V |
| 7 | 4, 6 | xpsnen 6931 | . . 3 ⊢ (𝐵 × {1o}) ≈ 𝐵 |
| 8 | 3, 7 | pm3.2i 272 | . 2 ⊢ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) |
| 9 | xp01disj 6532 | . 2 ⊢ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅ | |
| 10 | p0ex 4240 | . . . 4 ⊢ {∅} ∈ V | |
| 11 | 1, 10 | xpex 4798 | . . 3 ⊢ (𝐴 × {∅}) ∈ V |
| 12 | 6 | snex 4237 | . . . 4 ⊢ {1o} ∈ V |
| 13 | 4, 12 | xpex 4798 | . . 3 ⊢ (𝐵 × {1o}) ∈ V |
| 14 | breq1 4054 | . . . . 5 ⊢ (𝑥 = (𝐴 × {∅}) → (𝑥 ≈ 𝐴 ↔ (𝐴 × {∅}) ≈ 𝐴)) | |
| 15 | breq1 4054 | . . . . 5 ⊢ (𝑦 = (𝐵 × {1o}) → (𝑦 ≈ 𝐵 ↔ (𝐵 × {1o}) ≈ 𝐵)) | |
| 16 | 14, 15 | bi2anan9 606 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ↔ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵))) |
| 17 | ineq12 3373 | . . . . 5 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (𝑥 ∩ 𝑦) = ((𝐴 × {∅}) ∩ (𝐵 × {1o}))) | |
| 18 | 17 | eqeq1d 2215 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥 ∩ 𝑦) = ∅ ↔ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅)) |
| 19 | 16, 18 | anbi12d 473 | . . 3 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅))) |
| 20 | 11, 13, 19 | spc2ev 2873 | . 2 ⊢ ((((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅) → ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅)) |
| 21 | 8, 9, 20 | mp2an 426 | 1 ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 ∩ cin 3169 ∅c0 3464 {csn 3638 class class class wbr 4051 Oncon0 4418 × cxp 4681 1oc1o 6508 ≈ cen 6838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-1o 6515 df-en 6841 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |