| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > endisj | GIF version | ||
| Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.) |
| Ref | Expression |
|---|---|
| endisj.1 | ⊢ 𝐴 ∈ V |
| endisj.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| endisj | ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endisj.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 0ex 4161 | . . . 4 ⊢ ∅ ∈ V | |
| 3 | 1, 2 | xpsnen 6889 | . . 3 ⊢ (𝐴 × {∅}) ≈ 𝐴 |
| 4 | endisj.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 5 | 1on 6490 | . . . . 5 ⊢ 1o ∈ On | |
| 6 | 5 | elexi 2775 | . . . 4 ⊢ 1o ∈ V |
| 7 | 4, 6 | xpsnen 6889 | . . 3 ⊢ (𝐵 × {1o}) ≈ 𝐵 |
| 8 | 3, 7 | pm3.2i 272 | . 2 ⊢ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) |
| 9 | xp01disj 6500 | . 2 ⊢ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅ | |
| 10 | p0ex 4222 | . . . 4 ⊢ {∅} ∈ V | |
| 11 | 1, 10 | xpex 4779 | . . 3 ⊢ (𝐴 × {∅}) ∈ V |
| 12 | 6 | snex 4219 | . . . 4 ⊢ {1o} ∈ V |
| 13 | 4, 12 | xpex 4779 | . . 3 ⊢ (𝐵 × {1o}) ∈ V |
| 14 | breq1 4037 | . . . . 5 ⊢ (𝑥 = (𝐴 × {∅}) → (𝑥 ≈ 𝐴 ↔ (𝐴 × {∅}) ≈ 𝐴)) | |
| 15 | breq1 4037 | . . . . 5 ⊢ (𝑦 = (𝐵 × {1o}) → (𝑦 ≈ 𝐵 ↔ (𝐵 × {1o}) ≈ 𝐵)) | |
| 16 | 14, 15 | bi2anan9 606 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ↔ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵))) |
| 17 | ineq12 3360 | . . . . 5 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (𝑥 ∩ 𝑦) = ((𝐴 × {∅}) ∩ (𝐵 × {1o}))) | |
| 18 | 17 | eqeq1d 2205 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥 ∩ 𝑦) = ∅ ↔ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅)) |
| 19 | 16, 18 | anbi12d 473 | . . 3 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅))) |
| 20 | 11, 13, 19 | spc2ev 2860 | . 2 ⊢ ((((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅) → ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅)) |
| 21 | 8, 9, 20 | mp2an 426 | 1 ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 ∅c0 3451 {csn 3623 class class class wbr 4034 Oncon0 4399 × cxp 4662 1oc1o 6476 ≈ cen 6806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-1o 6483 df-en 6809 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |