ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endisj GIF version

Theorem endisj 6878
Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.)
Hypotheses
Ref Expression
endisj.1 𝐴 ∈ V
endisj.2 𝐵 ∈ V
Assertion
Ref Expression
endisj 𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem endisj
StepHypRef Expression
1 endisj.1 . . . 4 𝐴 ∈ V
2 0ex 4156 . . . 4 ∅ ∈ V
31, 2xpsnen 6875 . . 3 (𝐴 × {∅}) ≈ 𝐴
4 endisj.2 . . . 4 𝐵 ∈ V
5 1on 6476 . . . . 5 1o ∈ On
65elexi 2772 . . . 4 1o ∈ V
74, 6xpsnen 6875 . . 3 (𝐵 × {1o}) ≈ 𝐵
83, 7pm3.2i 272 . 2 ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵)
9 xp01disj 6486 . 2 ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅
10 p0ex 4217 . . . 4 {∅} ∈ V
111, 10xpex 4774 . . 3 (𝐴 × {∅}) ∈ V
126snex 4214 . . . 4 {1o} ∈ V
134, 12xpex 4774 . . 3 (𝐵 × {1o}) ∈ V
14 breq1 4032 . . . . 5 (𝑥 = (𝐴 × {∅}) → (𝑥𝐴 ↔ (𝐴 × {∅}) ≈ 𝐴))
15 breq1 4032 . . . . 5 (𝑦 = (𝐵 × {1o}) → (𝑦𝐵 ↔ (𝐵 × {1o}) ≈ 𝐵))
1614, 15bi2anan9 606 . . . 4 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥𝐴𝑦𝐵) ↔ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵)))
17 ineq12 3355 . . . . 5 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (𝑥𝑦) = ((𝐴 × {∅}) ∩ (𝐵 × {1o})))
1817eqeq1d 2202 . . . 4 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥𝑦) = ∅ ↔ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅))
1916, 18anbi12d 473 . . 3 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅) ↔ (((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅)))
2011, 13, 19spc2ev 2856 . 2 ((((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅) → ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅))
218, 9, 20mp2an 426 1 𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760  cin 3152  c0 3446  {csn 3618   class class class wbr 4029  Oncon0 4394   × cxp 4657  1oc1o 6462  cen 6792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-1o 6469  df-en 6795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator