Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcegv | GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | spcgv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | spcegf 2809 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: spcedv 2815 spcev 2821 elabd 2871 eqeu 2896 absneu 3648 elunii 3794 axpweq 4150 euotd 4232 brcogw 4773 opeldmg 4809 breldmg 4810 dmsnopg 5075 dff3im 5630 elunirn 5734 unielxp 6142 op1steq 6147 tfr0dm 6290 tfrlemibxssdm 6295 tfrlemiex 6299 tfr1onlembxssdm 6311 tfr1onlemex 6315 tfrcllembxssdm 6324 tfrcllemex 6328 frecabcl 6367 ertr 6516 f1oen3g 6720 f1dom2g 6722 f1domg 6724 dom3d 6740 en1 6765 phpelm 6832 isinfinf 6863 ordiso 7001 djudom 7058 difinfsn 7065 ctm 7074 enumct 7080 djudoml 7175 djudomr 7176 cc2lem 7207 recexnq 7331 ltexprlemrl 7551 ltexprlemru 7553 recexprlemm 7565 recexprlemloc 7572 recexprlem1ssl 7574 recexprlem1ssu 7575 axpre-suploclemres 7842 frecuzrdgtcl 10347 frecuzrdgfunlem 10354 fihasheqf1oi 10701 zfz1isolem1 10753 climeu 11237 fsum3 11328 uzwodc 11970 eltg3 12697 uptx 12914 xblm 13057 bj-2inf 13820 subctctexmid 13881 |
Copyright terms: Public domain | W3C validator |