ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcegv GIF version

Theorem spcegv 2814
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
spcgv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcegv (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem spcegv
StepHypRef Expression
1 nfcv 2308 . 2 𝑥𝐴
2 nfv 1516 . 2 𝑥𝜓
3 spcgv.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3spcegf 2809 1 (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wex 1480  wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  spcedv  2815  spcev  2821  elabd  2871  eqeu  2896  absneu  3648  elunii  3794  axpweq  4150  euotd  4232  brcogw  4773  opeldmg  4809  breldmg  4810  dmsnopg  5075  dff3im  5630  elunirn  5734  unielxp  6142  op1steq  6147  tfr0dm  6290  tfrlemibxssdm  6295  tfrlemiex  6299  tfr1onlembxssdm  6311  tfr1onlemex  6315  tfrcllembxssdm  6324  tfrcllemex  6328  frecabcl  6367  ertr  6516  f1oen3g  6720  f1dom2g  6722  f1domg  6724  dom3d  6740  en1  6765  phpelm  6832  isinfinf  6863  ordiso  7001  djudom  7058  difinfsn  7065  ctm  7074  enumct  7080  djudoml  7175  djudomr  7176  cc2lem  7207  recexnq  7331  ltexprlemrl  7551  ltexprlemru  7553  recexprlemm  7565  recexprlemloc  7572  recexprlem1ssl  7574  recexprlem1ssu  7575  axpre-suploclemres  7842  frecuzrdgtcl  10347  frecuzrdgfunlem  10354  fihasheqf1oi  10701  zfz1isolem1  10753  climeu  11237  fsum3  11328  uzwodc  11970  eltg3  12697  uptx  12914  xblm  13057  bj-2inf  13820  subctctexmid  13881
  Copyright terms: Public domain W3C validator