Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcegv | GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2296 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1505 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | spcgv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | spcegf 2792 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1332 ∃wex 1469 ∈ wcel 2125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 |
This theorem is referenced by: spcedv 2798 spcev 2804 elabd 2853 eqeu 2878 absneu 3627 elunii 3773 axpweq 4127 euotd 4209 brcogw 4748 opeldmg 4784 breldmg 4785 dmsnopg 5050 dff3im 5605 elunirn 5707 unielxp 6112 op1steq 6117 tfr0dm 6259 tfrlemibxssdm 6264 tfrlemiex 6268 tfr1onlembxssdm 6280 tfr1onlemex 6284 tfrcllembxssdm 6293 tfrcllemex 6297 frecabcl 6336 ertr 6484 f1oen3g 6688 f1dom2g 6690 f1domg 6692 dom3d 6708 en1 6733 phpelm 6800 isinfinf 6831 ordiso 6966 djudom 7023 difinfsn 7030 ctm 7039 enumct 7045 djudoml 7133 djudomr 7134 cc2lem 7165 recexnq 7289 ltexprlemrl 7509 ltexprlemru 7511 recexprlemm 7523 recexprlemloc 7530 recexprlem1ssl 7532 recexprlem1ssu 7533 axpre-suploclemres 7800 frecuzrdgtcl 10289 frecuzrdgfunlem 10296 fihasheqf1oi 10639 zfz1isolem1 10688 climeu 11170 fsum3 11261 eltg3 12396 uptx 12613 xblm 12756 bj-2inf 13451 subctctexmid 13512 |
Copyright terms: Public domain | W3C validator |