![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spcegv | GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2319 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1528 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | spcgv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | spcegf 2820 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 |
This theorem is referenced by: spcedv 2826 spcev 2832 elabd 2882 eqeu 2907 absneu 3664 elunii 3814 axpweq 4171 euotd 4254 brcogw 4796 opeldmg 4832 breldmg 4833 dmsnopg 5100 dff3im 5661 elunirn 5766 unielxp 6174 op1steq 6179 tfr0dm 6322 tfrlemibxssdm 6327 tfrlemiex 6331 tfr1onlembxssdm 6343 tfr1onlemex 6347 tfrcllembxssdm 6356 tfrcllemex 6360 frecabcl 6399 ertr 6549 f1oen3g 6753 f1dom2g 6755 f1domg 6757 dom3d 6773 en1 6798 phpelm 6865 isinfinf 6896 ordiso 7034 djudom 7091 difinfsn 7098 ctm 7107 enumct 7113 djudoml 7217 djudomr 7218 cc2lem 7264 recexnq 7388 ltexprlemrl 7608 ltexprlemru 7610 recexprlemm 7622 recexprlemloc 7629 recexprlem1ssl 7631 recexprlem1ssu 7632 axpre-suploclemres 7899 frecuzrdgtcl 10411 frecuzrdgfunlem 10418 fihasheqf1oi 10766 zfz1isolem1 10819 climeu 11303 fsum3 11394 uzwodc 12037 eltg3 13527 uptx 13744 xblm 13887 bj-2inf 14660 subctctexmid 14720 |
Copyright terms: Public domain | W3C validator |