| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcegv | GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | spcgv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | spcegf 2856 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∃wex 1515 ∈ wcel 2176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: spcedv 2862 spcev 2868 elabd 2918 eqeu 2943 absneu 3705 elunii 3855 axpweq 4215 euotd 4299 brcogw 4847 opeldmg 4883 breldmg 4884 dmsnopg 5154 dff3im 5725 elunirn 5835 unielxp 6260 op1steq 6265 tfr0dm 6408 tfrlemibxssdm 6413 tfrlemiex 6417 tfr1onlembxssdm 6429 tfr1onlemex 6433 tfrcllembxssdm 6442 tfrcllemex 6446 frecabcl 6485 ertr 6635 f1oen4g 6843 f1dom4g 6844 f1oen3g 6845 f1dom2g 6847 f1domg 6849 dom3d 6865 en1 6891 en2 6912 phpelm 6963 isinfinf 6994 ordiso 7138 djudom 7195 difinfsn 7202 ctm 7211 enumct 7217 djudoml 7331 djudomr 7332 cc2lem 7378 recexnq 7503 ltexprlemrl 7723 ltexprlemru 7725 recexprlemm 7737 recexprlemloc 7744 recexprlem1ssl 7746 recexprlem1ssu 7747 axpre-suploclemres 8014 frecuzrdgtcl 10557 frecuzrdgfunlem 10564 fihasheqf1oi 10932 zfz1isolem1 10985 climeu 11607 fsum3 11698 uzwodc 12358 gsumfzval 13223 mplsubgfilemm 14460 eltg3 14529 uptx 14746 xblm 14889 2lgslem1 15568 bj-2inf 15874 subctctexmid 15937 |
| Copyright terms: Public domain | W3C validator |