| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcegv | GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | spcgv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | spcegf 2886 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: spcedv 2892 spcev 2898 elabd 2948 eqeu 2973 absneu 3738 elunii 3893 axpweq 4255 euotd 4341 brcogw 4891 opeldmg 4928 breldmg 4929 dmsnopg 5200 dff3im 5780 elunirn 5890 unielxp 6320 op1steq 6325 tfr0dm 6468 tfrlemibxssdm 6473 tfrlemiex 6477 tfr1onlembxssdm 6489 tfr1onlemex 6493 tfrcllembxssdm 6502 tfrcllemex 6506 frecabcl 6545 ertr 6695 f1oen4g 6903 f1dom4g 6904 f1oen3g 6905 f1dom2g 6907 f1domg 6909 dom3d 6925 en1 6951 en2 6973 phpelm 7028 isinfinf 7059 ordiso 7203 djudom 7260 difinfsn 7267 ctm 7276 enumct 7282 djudoml 7401 djudomr 7402 cc2lem 7452 recexnq 7577 ltexprlemrl 7797 ltexprlemru 7799 recexprlemm 7811 recexprlemloc 7818 recexprlem1ssl 7820 recexprlem1ssu 7821 axpre-suploclemres 8088 frecuzrdgtcl 10634 frecuzrdgfunlem 10641 fihasheqf1oi 11009 zfz1isolem1 11062 climeu 11807 fsum3 11898 uzwodc 12558 gsumfzval 13424 mplsubgfilemm 14662 eltg3 14731 uptx 14948 xblm 15091 2lgslem1 15770 upgrex 15903 bj-2inf 16301 subctctexmid 16366 |
| Copyright terms: Public domain | W3C validator |