| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcegv | GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | spcgv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | spcegf 2863 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 |
| This theorem is referenced by: spcedv 2869 spcev 2875 elabd 2925 eqeu 2950 absneu 3715 elunii 3869 axpweq 4231 euotd 4317 brcogw 4865 opeldmg 4902 breldmg 4903 dmsnopg 5173 dff3im 5748 elunirn 5858 unielxp 6283 op1steq 6288 tfr0dm 6431 tfrlemibxssdm 6436 tfrlemiex 6440 tfr1onlembxssdm 6452 tfr1onlemex 6456 tfrcllembxssdm 6465 tfrcllemex 6469 frecabcl 6508 ertr 6658 f1oen4g 6866 f1dom4g 6867 f1oen3g 6868 f1dom2g 6870 f1domg 6872 dom3d 6888 en1 6914 en2 6936 phpelm 6989 isinfinf 7020 ordiso 7164 djudom 7221 difinfsn 7228 ctm 7237 enumct 7243 djudoml 7362 djudomr 7363 cc2lem 7413 recexnq 7538 ltexprlemrl 7758 ltexprlemru 7760 recexprlemm 7772 recexprlemloc 7779 recexprlem1ssl 7781 recexprlem1ssu 7782 axpre-suploclemres 8049 frecuzrdgtcl 10594 frecuzrdgfunlem 10601 fihasheqf1oi 10969 zfz1isolem1 11022 climeu 11722 fsum3 11813 uzwodc 12473 gsumfzval 13338 mplsubgfilemm 14575 eltg3 14644 uptx 14861 xblm 15004 2lgslem1 15683 upgrex 15814 bj-2inf 16073 subctctexmid 16139 |
| Copyright terms: Public domain | W3C validator |