![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spcegv | GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | spcgv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | spcegf 2843 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 |
This theorem is referenced by: spcedv 2849 spcev 2855 elabd 2905 eqeu 2930 absneu 3690 elunii 3840 axpweq 4200 euotd 4283 brcogw 4831 opeldmg 4867 breldmg 4868 dmsnopg 5137 dff3im 5703 elunirn 5809 unielxp 6227 op1steq 6232 tfr0dm 6375 tfrlemibxssdm 6380 tfrlemiex 6384 tfr1onlembxssdm 6396 tfr1onlemex 6400 tfrcllembxssdm 6409 tfrcllemex 6413 frecabcl 6452 ertr 6602 f1oen3g 6808 f1dom2g 6810 f1domg 6812 dom3d 6828 en1 6853 phpelm 6922 isinfinf 6953 ordiso 7095 djudom 7152 difinfsn 7159 ctm 7168 enumct 7174 djudoml 7279 djudomr 7280 cc2lem 7326 recexnq 7450 ltexprlemrl 7670 ltexprlemru 7672 recexprlemm 7684 recexprlemloc 7691 recexprlem1ssl 7693 recexprlem1ssu 7694 axpre-suploclemres 7961 frecuzrdgtcl 10483 frecuzrdgfunlem 10490 fihasheqf1oi 10858 zfz1isolem1 10911 climeu 11439 fsum3 11530 uzwodc 12174 gsumfzval 12974 eltg3 14225 uptx 14442 xblm 14585 bj-2inf 15430 subctctexmid 15491 |
Copyright terms: Public domain | W3C validator |