| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcegv | GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | spcgv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | spcegf 2847 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: spcedv 2853 spcev 2859 elabd 2909 eqeu 2934 absneu 3695 elunii 3845 axpweq 4205 euotd 4288 brcogw 4836 opeldmg 4872 breldmg 4873 dmsnopg 5142 dff3im 5710 elunirn 5816 unielxp 6241 op1steq 6246 tfr0dm 6389 tfrlemibxssdm 6394 tfrlemiex 6398 tfr1onlembxssdm 6410 tfr1onlemex 6414 tfrcllembxssdm 6423 tfrcllemex 6427 frecabcl 6466 ertr 6616 f1oen3g 6822 f1dom2g 6824 f1domg 6826 dom3d 6842 en1 6867 phpelm 6936 isinfinf 6967 ordiso 7111 djudom 7168 difinfsn 7175 ctm 7184 enumct 7190 djudoml 7304 djudomr 7305 cc2lem 7351 recexnq 7476 ltexprlemrl 7696 ltexprlemru 7698 recexprlemm 7710 recexprlemloc 7717 recexprlem1ssl 7719 recexprlem1ssu 7720 axpre-suploclemres 7987 frecuzrdgtcl 10523 frecuzrdgfunlem 10530 fihasheqf1oi 10898 zfz1isolem1 10951 climeu 11480 fsum3 11571 uzwodc 12231 gsumfzval 13095 mplsubgfilemm 14332 eltg3 14401 uptx 14618 xblm 14761 2lgslem1 15440 bj-2inf 15692 subctctexmid 15755 |
| Copyright terms: Public domain | W3C validator |