ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcegv GIF version

Theorem spcegv 2868
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
spcgv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcegv (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem spcegv
StepHypRef Expression
1 nfcv 2350 . 2 𝑥𝐴
2 nfv 1552 . 2 𝑥𝜓
3 spcgv.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3spcegf 2863 1 (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wex 1516  wcel 2178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778
This theorem is referenced by:  spcedv  2869  spcev  2875  elabd  2925  eqeu  2950  absneu  3715  elunii  3869  axpweq  4231  euotd  4317  brcogw  4865  opeldmg  4902  breldmg  4903  dmsnopg  5173  dff3im  5748  elunirn  5858  unielxp  6283  op1steq  6288  tfr0dm  6431  tfrlemibxssdm  6436  tfrlemiex  6440  tfr1onlembxssdm  6452  tfr1onlemex  6456  tfrcllembxssdm  6465  tfrcllemex  6469  frecabcl  6508  ertr  6658  f1oen4g  6866  f1dom4g  6867  f1oen3g  6868  f1dom2g  6870  f1domg  6872  dom3d  6888  en1  6914  en2  6936  phpelm  6989  isinfinf  7020  ordiso  7164  djudom  7221  difinfsn  7228  ctm  7237  enumct  7243  djudoml  7362  djudomr  7363  cc2lem  7413  recexnq  7538  ltexprlemrl  7758  ltexprlemru  7760  recexprlemm  7772  recexprlemloc  7779  recexprlem1ssl  7781  recexprlem1ssu  7782  axpre-suploclemres  8049  frecuzrdgtcl  10594  frecuzrdgfunlem  10601  fihasheqf1oi  10969  zfz1isolem1  11022  climeu  11722  fsum3  11813  uzwodc  12473  gsumfzval  13338  mplsubgfilemm  14575  eltg3  14644  uptx  14861  xblm  15004  2lgslem1  15683  upgrex  15814  bj-2inf  16073  subctctexmid  16139
  Copyright terms: Public domain W3C validator