![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exprecap | GIF version |
Description: Nonnegative integer exponentiation of a reciprocal. (Contributed by Jim Kingdon, 10-Jun-2020.) |
Ref | Expression |
---|---|
exprecap | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐴)↑𝑁) = (1 / (𝐴↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expclzap 9816 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℂ) | |
2 | recclap 8043 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℂ) | |
3 | 2 | 3adant3 959 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (1 / 𝐴) ∈ ℂ) |
4 | recap0 8049 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) # 0) | |
5 | 4 | 3adant3 959 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (1 / 𝐴) # 0) |
6 | simp3 941 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
7 | expclzap 9816 | . . 3 ⊢ (((1 / 𝐴) ∈ ℂ ∧ (1 / 𝐴) # 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐴)↑𝑁) ∈ ℂ) | |
8 | 3, 5, 6, 7 | syl3anc 1170 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐴)↑𝑁) ∈ ℂ) |
9 | expap0i 9823 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) # 0) | |
10 | simp1 939 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ) | |
11 | simp2 940 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → 𝐴 # 0) | |
12 | 10, 11 | recidapd 8147 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴 · (1 / 𝐴)) = 1) |
13 | 12 | oveq1d 5605 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → ((𝐴 · (1 / 𝐴))↑𝑁) = (1↑𝑁)) |
14 | mulexpzap 9831 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ ((1 / 𝐴) ∈ ℂ ∧ (1 / 𝐴) # 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · (1 / 𝐴))↑𝑁) = ((𝐴↑𝑁) · ((1 / 𝐴)↑𝑁))) | |
15 | 10, 11, 3, 5, 6, 14 | syl221anc 1181 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → ((𝐴 · (1 / 𝐴))↑𝑁) = ((𝐴↑𝑁) · ((1 / 𝐴)↑𝑁))) |
16 | 1exp 9820 | . . . 4 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | |
17 | 6, 16 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) = 1) |
18 | 13, 15, 17 | 3eqtr3d 2123 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → ((𝐴↑𝑁) · ((1 / 𝐴)↑𝑁)) = 1) |
19 | 1, 8, 9, 18 | mvllmulapd 8197 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐴)↑𝑁) = (1 / (𝐴↑𝑁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 class class class wbr 3811 (class class class)co 5590 ℂcc 7250 0cc0 7252 1c1 7253 · cmul 7257 # cap 7957 / cdiv 8036 ℤcz 8645 ↑cexp 9790 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 3999 ax-un 4223 ax-setind 4315 ax-iinf 4365 ax-cnex 7338 ax-resscn 7339 ax-1cn 7340 ax-1re 7341 ax-icn 7342 ax-addcl 7343 ax-addrcl 7344 ax-mulcl 7345 ax-mulrcl 7346 ax-addcom 7347 ax-mulcom 7348 ax-addass 7349 ax-mulass 7350 ax-distr 7351 ax-i2m1 7352 ax-0lt1 7353 ax-1rid 7354 ax-0id 7355 ax-rnegex 7356 ax-precex 7357 ax-cnre 7358 ax-pre-ltirr 7359 ax-pre-ltwlin 7360 ax-pre-lttrn 7361 ax-pre-apti 7362 ax-pre-ltadd 7363 ax-pre-mulgt0 7364 ax-pre-mulext 7365 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-if 3374 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4083 df-po 4086 df-iso 4087 df-iord 4156 df-on 4158 df-ilim 4159 df-suc 4161 df-iom 4368 df-xp 4406 df-rel 4407 df-cnv 4408 df-co 4409 df-dm 4410 df-rn 4411 df-res 4412 df-ima 4413 df-iota 4933 df-fun 4970 df-fn 4971 df-f 4972 df-f1 4973 df-fo 4974 df-f1o 4975 df-fv 4976 df-riota 5546 df-ov 5593 df-oprab 5594 df-mpt2 5595 df-1st 5845 df-2nd 5846 df-recs 6001 df-frec 6087 df-pnf 7426 df-mnf 7427 df-xr 7428 df-ltxr 7429 df-le 7430 df-sub 7557 df-neg 7558 df-reap 7951 df-ap 7958 df-div 8037 df-inn 8316 df-n0 8565 df-z 8646 df-uz 8914 df-iseq 9740 df-iexp 9791 |
This theorem is referenced by: expmulzap 9837 expdivap 9842 sqrecapd 9924 exprecapd 9928 |
Copyright terms: Public domain | W3C validator |