ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blssps GIF version

Theorem blssps 12585
Description: Any point 𝑃 in a ball 𝐵 can be centered in another ball that is a subset of 𝐵. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blssps ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃𝐵) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐷   𝑥,𝑃   𝑥,𝑋

Proof of Theorem blssps
Dummy variables 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blrnps 12569 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (ball‘𝐷) ↔ ∃𝑦𝑋𝑟 ∈ ℝ* 𝐵 = (𝑦(ball‘𝐷)𝑟)))
2 elblps 12548 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝑃 ∈ (𝑦(ball‘𝐷)𝑟) ↔ (𝑃𝑋 ∧ (𝑦𝐷𝑃) < 𝑟)))
3 simpl1 984 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → 𝐷 ∈ (PsMet‘𝑋))
4 simpl2 985 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → 𝑦𝑋)
5 simpr 109 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → 𝑃𝑋)
6 psmetcl 12484 . . . . . . . . . . 11 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑃𝑋) → (𝑦𝐷𝑃) ∈ ℝ*)
73, 4, 5, 6syl3anc 1216 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → (𝑦𝐷𝑃) ∈ ℝ*)
8 simpl3 986 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → 𝑟 ∈ ℝ*)
9 qbtwnxr 10028 . . . . . . . . . . 11 (((𝑦𝐷𝑃) ∈ ℝ*𝑟 ∈ ℝ* ∧ (𝑦𝐷𝑃) < 𝑟) → ∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))
1093expia 1183 . . . . . . . . . 10 (((𝑦𝐷𝑃) ∈ ℝ*𝑟 ∈ ℝ*) → ((𝑦𝐷𝑃) < 𝑟 → ∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟)))
117, 8, 10syl2anc 408 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → ((𝑦𝐷𝑃) < 𝑟 → ∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟)))
12 qre 9410 . . . . . . . . . . 11 (𝑧 ∈ ℚ → 𝑧 ∈ ℝ)
13 simpll1 1020 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝐷 ∈ (PsMet‘𝑋))
14 simplr 519 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑃𝑋)
15 simpll2 1021 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑦𝑋)
16 psmetsym 12487 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑦𝑋) → (𝑃𝐷𝑦) = (𝑦𝐷𝑃))
1713, 14, 15, 16syl3anc 1216 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) = (𝑦𝐷𝑃))
18 simprrl 528 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑦𝐷𝑃) < 𝑧)
1917, 18eqbrtrd 3945 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) < 𝑧)
20 simprl 520 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑧 ∈ ℝ)
21 psmetcl 12484 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑦𝑋) → (𝑃𝐷𝑦) ∈ ℝ*)
2213, 14, 15, 21syl3anc 1216 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ∈ ℝ*)
23 rexr 7804 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
2423ad2antrl 481 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑧 ∈ ℝ*)
2522, 24, 19xrltled 9578 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ≤ 𝑧)
26 psmetlecl 12492 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑃𝑋𝑦𝑋) ∧ (𝑧 ∈ ℝ ∧ (𝑃𝐷𝑦) ≤ 𝑧)) → (𝑃𝐷𝑦) ∈ ℝ)
2713, 14, 15, 20, 25, 26syl122anc 1225 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ∈ ℝ)
28 difrp 9473 . . . . . . . . . . . . . . 15 (((𝑃𝐷𝑦) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑃𝐷𝑦) < 𝑧 ↔ (𝑧 − (𝑃𝐷𝑦)) ∈ ℝ+))
2927, 20, 28syl2anc 408 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → ((𝑃𝐷𝑦) < 𝑧 ↔ (𝑧 − (𝑃𝐷𝑦)) ∈ ℝ+))
3019, 29mpbid 146 . . . . . . . . . . . . 13 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑧 − (𝑃𝐷𝑦)) ∈ ℝ+)
3120, 27resubcld 8136 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑧 − (𝑃𝐷𝑦)) ∈ ℝ)
3222xrleidd 9580 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ≤ (𝑃𝐷𝑦))
3320recnd 7787 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑧 ∈ ℂ)
3427recnd 7787 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ∈ ℂ)
3533, 34nncand 8071 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑧 − (𝑧 − (𝑃𝐷𝑦))) = (𝑃𝐷𝑦))
3632, 35breqtrrd 3951 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ≤ (𝑧 − (𝑧 − (𝑃𝐷𝑦))))
37 blss2ps 12564 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑦𝑋) ∧ ((𝑧 − (𝑃𝐷𝑦)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑃𝐷𝑦) ≤ (𝑧 − (𝑧 − (𝑃𝐷𝑦))))) → (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑧))
3813, 14, 15, 31, 20, 36, 37syl33anc 1231 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑧))
39 simpll3 1022 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑟 ∈ ℝ*)
40 simprrr 529 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑧 < 𝑟)
4124, 39, 40xrltled 9578 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑧𝑟)
42 ssblps 12583 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋) ∧ (𝑧 ∈ ℝ*𝑟 ∈ ℝ*) ∧ 𝑧𝑟) → (𝑦(ball‘𝐷)𝑧) ⊆ (𝑦(ball‘𝐷)𝑟))
4313, 15, 24, 39, 41, 42syl221anc 1227 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑦(ball‘𝐷)𝑧) ⊆ (𝑦(ball‘𝐷)𝑟))
4438, 43sstrd 3102 . . . . . . . . . . . . 13 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑟))
45 oveq2 5775 . . . . . . . . . . . . . . 15 (𝑥 = (𝑧 − (𝑃𝐷𝑦)) → (𝑃(ball‘𝐷)𝑥) = (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))))
4645sseq1d 3121 . . . . . . . . . . . . . 14 (𝑥 = (𝑧 − (𝑃𝐷𝑦)) → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟) ↔ (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑟)))
4746rspcev 2784 . . . . . . . . . . . . 13 (((𝑧 − (𝑃𝐷𝑦)) ∈ ℝ+ ∧ (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑟)) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))
4830, 44, 47syl2anc 408 . . . . . . . . . . . 12 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))
4948expr 372 . . . . . . . . . . 11 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ 𝑧 ∈ ℝ) → (((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5012, 49sylan2 284 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ 𝑧 ∈ ℚ) → (((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5150rexlimdva 2547 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → (∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5211, 51syld 45 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → ((𝑦𝐷𝑃) < 𝑟 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5352expimpd 360 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → ((𝑃𝑋 ∧ (𝑦𝐷𝑃) < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
542, 53sylbid 149 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝑃 ∈ (𝑦(ball‘𝐷)𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
55 eleq2 2201 . . . . . . 7 (𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃𝐵𝑃 ∈ (𝑦(ball‘𝐷)𝑟)))
56 sseq2 3116 . . . . . . . 8 (𝐵 = (𝑦(ball‘𝐷)𝑟) → ((𝑃(ball‘𝐷)𝑥) ⊆ 𝐵 ↔ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5756rexbidv 2436 . . . . . . 7 (𝐵 = (𝑦(ball‘𝐷)𝑟) → (∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵 ↔ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5855, 57imbi12d 233 . . . . . 6 (𝐵 = (𝑦(ball‘𝐷)𝑟) → ((𝑃𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵) ↔ (𝑃 ∈ (𝑦(ball‘𝐷)𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))))
5954, 58syl5ibrcom 156 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)))
60593expib 1184 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → ((𝑦𝑋𝑟 ∈ ℝ*) → (𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵))))
6160rexlimdvv 2554 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑦𝑋𝑟 ∈ ℝ* 𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)))
621, 61sylbid 149 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (ball‘𝐷) → (𝑃𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)))
63623imp 1175 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃𝐵) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wrex 2415  wss 3066   class class class wbr 3924  ran crn 4535  cfv 5118  (class class class)co 5767  cr 7612  *cxr 7792   < clt 7793  cle 7794  cmin 7926  cq 9404  +crp 9434  PsMetcpsmet 12137  ballcbl 12140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-map 6537  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-xneg 9552  df-xadd 9553  df-psmet 12145  df-bl 12148
This theorem is referenced by:  blssexps  12587
  Copyright terms: Public domain W3C validator