ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blss GIF version

Theorem blss 14607
Description: Any point 𝑃 in a ball 𝐵 can be centered in another ball that is a subset of 𝐵. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
blss ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃𝐵) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐷   𝑥,𝑃   𝑥,𝑋

Proof of Theorem blss
Dummy variables 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blrn 14591 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐵 ∈ ran (ball‘𝐷) ↔ ∃𝑦𝑋𝑟 ∈ ℝ* 𝐵 = (𝑦(ball‘𝐷)𝑟)))
2 elbl 14570 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝑃 ∈ (𝑦(ball‘𝐷)𝑟) ↔ (𝑃𝑋 ∧ (𝑦𝐷𝑃) < 𝑟)))
3 simpl1 1002 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → 𝐷 ∈ (∞Met‘𝑋))
4 simpl2 1003 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → 𝑦𝑋)
5 simpr 110 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → 𝑃𝑋)
6 xmetcl 14531 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑃𝑋) → (𝑦𝐷𝑃) ∈ ℝ*)
73, 4, 5, 6syl3anc 1249 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → (𝑦𝐷𝑃) ∈ ℝ*)
8 simpl3 1004 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → 𝑟 ∈ ℝ*)
9 qbtwnxr 10329 . . . . . . . . . . 11 (((𝑦𝐷𝑃) ∈ ℝ*𝑟 ∈ ℝ* ∧ (𝑦𝐷𝑃) < 𝑟) → ∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))
1093expia 1207 . . . . . . . . . 10 (((𝑦𝐷𝑃) ∈ ℝ*𝑟 ∈ ℝ*) → ((𝑦𝐷𝑃) < 𝑟 → ∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟)))
117, 8, 10syl2anc 411 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → ((𝑦𝐷𝑃) < 𝑟 → ∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟)))
12 qre 9693 . . . . . . . . . . 11 (𝑧 ∈ ℚ → 𝑧 ∈ ℝ)
13 simpll1 1038 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝐷 ∈ (∞Met‘𝑋))
14 simplr 528 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑃𝑋)
15 simpll2 1039 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑦𝑋)
16 xmetsym 14547 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) → (𝑃𝐷𝑦) = (𝑦𝐷𝑃))
1713, 14, 15, 16syl3anc 1249 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) = (𝑦𝐷𝑃))
18 simprrl 539 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑦𝐷𝑃) < 𝑧)
1917, 18eqbrtrd 4052 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) < 𝑧)
20 simprl 529 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑧 ∈ ℝ)
21 xmetcl 14531 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) → (𝑃𝐷𝑦) ∈ ℝ*)
2213, 14, 15, 21syl3anc 1249 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ∈ ℝ*)
23 rexr 8067 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
2423ad2antrl 490 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑧 ∈ ℝ*)
2522, 24, 19xrltled 9868 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ≤ 𝑧)
26 xmetlecl 14546 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑃𝑋𝑦𝑋) ∧ (𝑧 ∈ ℝ ∧ (𝑃𝐷𝑦) ≤ 𝑧)) → (𝑃𝐷𝑦) ∈ ℝ)
2713, 14, 15, 20, 25, 26syl122anc 1258 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ∈ ℝ)
28 difrp 9761 . . . . . . . . . . . . . . 15 (((𝑃𝐷𝑦) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑃𝐷𝑦) < 𝑧 ↔ (𝑧 − (𝑃𝐷𝑦)) ∈ ℝ+))
2927, 20, 28syl2anc 411 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → ((𝑃𝐷𝑦) < 𝑧 ↔ (𝑧 − (𝑃𝐷𝑦)) ∈ ℝ+))
3019, 29mpbid 147 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑧 − (𝑃𝐷𝑦)) ∈ ℝ+)
3120, 27resubcld 8402 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑧 − (𝑃𝐷𝑦)) ∈ ℝ)
3222xrleidd 9870 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ≤ (𝑃𝐷𝑦))
3320recnd 8050 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑧 ∈ ℂ)
3427recnd 8050 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ∈ ℂ)
3533, 34nncand 8337 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑧 − (𝑧 − (𝑃𝐷𝑦))) = (𝑃𝐷𝑦))
3632, 35breqtrrd 4058 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ≤ (𝑧 − (𝑧 − (𝑃𝐷𝑦))))
37 blss2 14586 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) ∧ ((𝑧 − (𝑃𝐷𝑦)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑃𝐷𝑦) ≤ (𝑧 − (𝑧 − (𝑃𝐷𝑦))))) → (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑧))
3813, 14, 15, 31, 20, 36, 37syl33anc 1264 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑧))
39 simpll3 1040 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑟 ∈ ℝ*)
40 simprrr 540 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑧 < 𝑟)
4124, 39, 40xrltled 9868 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑧𝑟)
42 ssbl 14605 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑧 ∈ ℝ*𝑟 ∈ ℝ*) ∧ 𝑧𝑟) → (𝑦(ball‘𝐷)𝑧) ⊆ (𝑦(ball‘𝐷)𝑟))
4313, 15, 24, 39, 41, 42syl221anc 1260 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑦(ball‘𝐷)𝑧) ⊆ (𝑦(ball‘𝐷)𝑟))
4438, 43sstrd 3190 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑟))
45 oveq2 5927 . . . . . . . . . . . . . . 15 (𝑥 = (𝑧 − (𝑃𝐷𝑦)) → (𝑃(ball‘𝐷)𝑥) = (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))))
4645sseq1d 3209 . . . . . . . . . . . . . 14 (𝑥 = (𝑧 − (𝑃𝐷𝑦)) → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟) ↔ (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑟)))
4746rspcev 2865 . . . . . . . . . . . . 13 (((𝑧 − (𝑃𝐷𝑦)) ∈ ℝ+ ∧ (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑟)) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))
4830, 44, 47syl2anc 411 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))
4948expr 375 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ 𝑧 ∈ ℝ) → (((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5012, 49sylan2 286 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ 𝑧 ∈ ℚ) → (((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5150rexlimdva 2611 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → (∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5211, 51syld 45 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → ((𝑦𝐷𝑃) < 𝑟 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5352expimpd 363 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → ((𝑃𝑋 ∧ (𝑦𝐷𝑃) < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
542, 53sylbid 150 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝑃 ∈ (𝑦(ball‘𝐷)𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
55 eleq2 2257 . . . . . . 7 (𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃𝐵𝑃 ∈ (𝑦(ball‘𝐷)𝑟)))
56 sseq2 3204 . . . . . . . 8 (𝐵 = (𝑦(ball‘𝐷)𝑟) → ((𝑃(ball‘𝐷)𝑥) ⊆ 𝐵 ↔ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5756rexbidv 2495 . . . . . . 7 (𝐵 = (𝑦(ball‘𝐷)𝑟) → (∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵 ↔ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5855, 57imbi12d 234 . . . . . 6 (𝐵 = (𝑦(ball‘𝐷)𝑟) → ((𝑃𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵) ↔ (𝑃 ∈ (𝑦(ball‘𝐷)𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))))
5954, 58syl5ibrcom 157 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)))
60593expib 1208 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((𝑦𝑋𝑟 ∈ ℝ*) → (𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵))))
6160rexlimdvv 2618 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (∃𝑦𝑋𝑟 ∈ ℝ* 𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)))
621, 61sylbid 150 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐵 ∈ ran (ball‘𝐷) → (𝑃𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)))
63623imp 1195 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃𝐵) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wrex 2473  wss 3154   class class class wbr 4030  ran crn 4661  cfv 5255  (class class class)co 5919  cr 7873  *cxr 8055   < clt 8056  cle 8057  cmin 8192  cq 9687  +crp 9722  ∞Metcxmet 14035  ballcbl 14037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-psmet 14042  df-xmet 14043  df-bl 14045
This theorem is referenced by:  blssex  14609  blin2  14611  metss  14673  metcnp3  14690
  Copyright terms: Public domain W3C validator