ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blss GIF version

Theorem blss 13931
Description: Any point 𝑃 in a ball 𝐡 can be centered in another ball that is a subset of 𝐡. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
blss ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐡 ∈ ran (ballβ€˜π·) ∧ 𝑃 ∈ 𝐡) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝐷   π‘₯,𝑃   π‘₯,𝑋

Proof of Theorem blss
Dummy variables π‘Ÿ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blrn 13915 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐡 ∈ ran (ballβ€˜π·) ↔ βˆƒπ‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ* 𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ)))
2 elbl 13894 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (𝑃 ∈ (𝑦(ballβ€˜π·)π‘Ÿ) ↔ (𝑃 ∈ 𝑋 ∧ (𝑦𝐷𝑃) < π‘Ÿ)))
3 simpl1 1000 . . . . . . . . . . 11 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
4 simpl2 1001 . . . . . . . . . . 11 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ 𝑦 ∈ 𝑋)
5 simpr 110 . . . . . . . . . . 11 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ 𝑃 ∈ 𝑋)
6 xmetcl 13855 . . . . . . . . . . 11 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) β†’ (𝑦𝐷𝑃) ∈ ℝ*)
73, 4, 5, 6syl3anc 1238 . . . . . . . . . 10 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ (𝑦𝐷𝑃) ∈ ℝ*)
8 simpl3 1002 . . . . . . . . . 10 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ π‘Ÿ ∈ ℝ*)
9 qbtwnxr 10258 . . . . . . . . . . 11 (((𝑦𝐷𝑃) ∈ ℝ* ∧ π‘Ÿ ∈ ℝ* ∧ (𝑦𝐷𝑃) < π‘Ÿ) β†’ βˆƒπ‘§ ∈ β„š ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))
1093expia 1205 . . . . . . . . . 10 (((𝑦𝐷𝑃) ∈ ℝ* ∧ π‘Ÿ ∈ ℝ*) β†’ ((𝑦𝐷𝑃) < π‘Ÿ β†’ βˆƒπ‘§ ∈ β„š ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ)))
117, 8, 10syl2anc 411 . . . . . . . . 9 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ ((𝑦𝐷𝑃) < π‘Ÿ β†’ βˆƒπ‘§ ∈ β„š ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ)))
12 qre 9625 . . . . . . . . . . 11 (𝑧 ∈ β„š β†’ 𝑧 ∈ ℝ)
13 simpll1 1036 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
14 simplr 528 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑃 ∈ 𝑋)
15 simpll2 1037 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑦 ∈ 𝑋)
16 xmetsym 13871 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ (𝑃𝐷𝑦) = (𝑦𝐷𝑃))
1713, 14, 15, 16syl3anc 1238 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) = (𝑦𝐷𝑃))
18 simprrl 539 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑦𝐷𝑃) < 𝑧)
1917, 18eqbrtrd 4026 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) < 𝑧)
20 simprl 529 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑧 ∈ ℝ)
21 xmetcl 13855 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ (𝑃𝐷𝑦) ∈ ℝ*)
2213, 14, 15, 21syl3anc 1238 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ∈ ℝ*)
23 rexr 8003 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ β†’ 𝑧 ∈ ℝ*)
2423ad2antrl 490 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑧 ∈ ℝ*)
2522, 24, 19xrltled 9799 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ≀ 𝑧)
26 xmetlecl 13870 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ (𝑃𝐷𝑦) ≀ 𝑧)) β†’ (𝑃𝐷𝑦) ∈ ℝ)
2713, 14, 15, 20, 25, 26syl122anc 1247 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ∈ ℝ)
28 difrp 9692 . . . . . . . . . . . . . . 15 (((𝑃𝐷𝑦) ∈ ℝ ∧ 𝑧 ∈ ℝ) β†’ ((𝑃𝐷𝑦) < 𝑧 ↔ (𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ+))
2927, 20, 28syl2anc 411 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ ((𝑃𝐷𝑦) < 𝑧 ↔ (𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ+))
3019, 29mpbid 147 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ+)
3120, 27resubcld 8338 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ)
3222xrleidd 9801 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ≀ (𝑃𝐷𝑦))
3320recnd 7986 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑧 ∈ β„‚)
3427recnd 7986 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ∈ β„‚)
3533, 34nncand 8273 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑧 βˆ’ (𝑧 βˆ’ (𝑃𝐷𝑦))) = (𝑃𝐷𝑦))
3632, 35breqtrrd 4032 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ≀ (𝑧 βˆ’ (𝑧 βˆ’ (𝑃𝐷𝑦))))
37 blss2 13910 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ ((𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑃𝐷𝑦) ≀ (𝑧 βˆ’ (𝑧 βˆ’ (𝑃𝐷𝑦))))) β†’ (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))) βŠ† (𝑦(ballβ€˜π·)𝑧))
3813, 14, 15, 31, 20, 36, 37syl33anc 1253 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))) βŠ† (𝑦(ballβ€˜π·)𝑧))
39 simpll3 1038 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ π‘Ÿ ∈ ℝ*)
40 simprrr 540 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑧 < π‘Ÿ)
4124, 39, 40xrltled 9799 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑧 ≀ π‘Ÿ)
42 ssbl 13929 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑧 ∈ ℝ* ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑧 ≀ π‘Ÿ) β†’ (𝑦(ballβ€˜π·)𝑧) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))
4313, 15, 24, 39, 41, 42syl221anc 1249 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑦(ballβ€˜π·)𝑧) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))
4438, 43sstrd 3166 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))
45 oveq2 5883 . . . . . . . . . . . . . . 15 (π‘₯ = (𝑧 βˆ’ (𝑃𝐷𝑦)) β†’ (𝑃(ballβ€˜π·)π‘₯) = (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))))
4645sseq1d 3185 . . . . . . . . . . . . . 14 (π‘₯ = (𝑧 βˆ’ (𝑃𝐷𝑦)) β†’ ((𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ) ↔ (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
4746rspcev 2842 . . . . . . . . . . . . 13 (((𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ+ ∧ (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))
4830, 44, 47syl2anc 411 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))
4948expr 375 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ 𝑧 ∈ ℝ) β†’ (((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5012, 49sylan2 286 . . . . . . . . . 10 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ 𝑧 ∈ β„š) β†’ (((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5150rexlimdva 2594 . . . . . . . . 9 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ (βˆƒπ‘§ ∈ β„š ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5211, 51syld 45 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ ((𝑦𝐷𝑃) < π‘Ÿ β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5352expimpd 363 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ ((𝑃 ∈ 𝑋 ∧ (𝑦𝐷𝑃) < π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
542, 53sylbid 150 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (𝑃 ∈ (𝑦(ballβ€˜π·)π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
55 eleq2 2241 . . . . . . 7 (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ (𝑃 ∈ 𝐡 ↔ 𝑃 ∈ (𝑦(ballβ€˜π·)π‘Ÿ)))
56 sseq2 3180 . . . . . . . 8 (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ ((𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡 ↔ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5756rexbidv 2478 . . . . . . 7 (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ (βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡 ↔ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5855, 57imbi12d 234 . . . . . 6 (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ ((𝑃 ∈ 𝐡 β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡) ↔ (𝑃 ∈ (𝑦(ballβ€˜π·)π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))))
5954, 58syl5ibrcom 157 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ (𝑃 ∈ 𝐡 β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)))
60593expib 1206 . . . 4 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ ((𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ (𝑃 ∈ 𝐡 β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡))))
6160rexlimdvv 2601 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (βˆƒπ‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ* 𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ (𝑃 ∈ 𝐡 β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)))
621, 61sylbid 150 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐡 ∈ ran (ballβ€˜π·) β†’ (𝑃 ∈ 𝐡 β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)))
63623imp 1193 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐡 ∈ ran (ballβ€˜π·) ∧ 𝑃 ∈ 𝐡) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆƒwrex 2456   βŠ† wss 3130   class class class wbr 4004  ran crn 4628  β€˜cfv 5217  (class class class)co 5875  β„cr 7810  β„*cxr 7991   < clt 7992   ≀ cle 7993   βˆ’ cmin 8128  β„šcq 9619  β„+crp 9653  βˆžMetcxmet 13443  ballcbl 13445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-po 4297  df-iso 4298  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-map 6650  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-xneg 9772  df-xadd 9773  df-psmet 13450  df-xmet 13451  df-bl 13453
This theorem is referenced by:  blssex  13933  blin2  13935  metss  13997  metcnp3  14014
  Copyright terms: Public domain W3C validator