ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2strbasg GIF version

Theorem 2strbasg 13119
Description: The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
Hypotheses
Ref Expression
2str.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}
2str.e 𝐸 = Slot 𝑁
2str.l 1 < 𝑁
2str.n 𝑁 ∈ ℕ
Assertion
Ref Expression
2strbasg ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))

Proof of Theorem 2strbasg
StepHypRef Expression
1 baseslid 13056 . 2 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
2 2str.g . . 3 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}
3 basendxnn 13054 . . . . . 6 (Base‘ndx) ∈ ℕ
43a1i 9 . . . . 5 ((𝐵𝑉+𝑊) → (Base‘ndx) ∈ ℕ)
5 simpl 109 . . . . 5 ((𝐵𝑉+𝑊) → 𝐵𝑉)
6 opexg 4293 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ 𝐵𝑉) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
74, 5, 6syl2anc 411 . . . 4 ((𝐵𝑉+𝑊) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
8 2str.e . . . . . . . 8 𝐸 = Slot 𝑁
9 2str.n . . . . . . . 8 𝑁 ∈ ℕ
108, 9ndxarg 13021 . . . . . . 7 (𝐸‘ndx) = 𝑁
1110, 9eqeltri 2282 . . . . . 6 (𝐸‘ndx) ∈ ℕ
1211a1i 9 . . . . 5 ((𝐵𝑉+𝑊) → (𝐸‘ndx) ∈ ℕ)
13 simpr 110 . . . . 5 ((𝐵𝑉+𝑊) → +𝑊)
14 opexg 4293 . . . . 5 (((𝐸‘ndx) ∈ ℕ ∧ +𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ V)
1512, 13, 14syl2anc 411 . . . 4 ((𝐵𝑉+𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ V)
16 prexg 4274 . . . 4 ((⟨(Base‘ndx), 𝐵⟩ ∈ V ∧ ⟨(𝐸‘ndx), + ⟩ ∈ V) → {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩} ∈ V)
177, 15, 16syl2anc 411 . . 3 ((𝐵𝑉+𝑊) → {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩} ∈ V)
182, 17eqeltrid 2296 . 2 ((𝐵𝑉+𝑊) → 𝐺 ∈ V)
193nnrei 9087 . . . . . 6 (Base‘ndx) ∈ ℝ
20 2str.l . . . . . . 7 1 < 𝑁
21 basendx 13053 . . . . . . 7 (Base‘ndx) = 1
2220, 21, 103brtr4i 4092 . . . . . 6 (Base‘ndx) < (𝐸‘ndx)
2319, 22ltneii 8211 . . . . 5 (Base‘ndx) ≠ (𝐸‘ndx)
2423a1i 9 . . . 4 ((𝐵𝑉+𝑊) → (Base‘ndx) ≠ (𝐸‘ndx))
25 funprg 5347 . . . 4 ((((Base‘ndx) ∈ ℕ ∧ (𝐸‘ndx) ∈ ℕ) ∧ (𝐵𝑉+𝑊) ∧ (Base‘ndx) ≠ (𝐸‘ndx)) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
264, 12, 5, 13, 24, 25syl221anc 1263 . . 3 ((𝐵𝑉+𝑊) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
272funeqi 5315 . . 3 (Fun 𝐺 ↔ Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
2826, 27sylibr 134 . 2 ((𝐵𝑉+𝑊) → Fun 𝐺)
29 prid1g 3750 . . . 4 (⟨(Base‘ndx), 𝐵⟩ ∈ V → ⟨(Base‘ndx), 𝐵⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
307, 29syl 14 . . 3 ((𝐵𝑉+𝑊) → ⟨(Base‘ndx), 𝐵⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
3130, 2eleqtrrdi 2303 . 2 ((𝐵𝑉+𝑊) → ⟨(Base‘ndx), 𝐵⟩ ∈ 𝐺)
321, 18, 28, 31strslfvd 13040 1 ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wne 2380  Vcvv 2779  {cpr 3647  cop 3649   class class class wbr 4062  Fun wfun 5288  cfv 5294  1c1 7968   < clt 8149  cn 9078  ndxcnx 12995  Slot cslot 12997  Basecbs 12998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064  ax-pre-ltirr 8079
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fv 5302  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-ndx 13001  df-slot 13002  df-base 13004
This theorem is referenced by:  grpbaseg  13126  eltpsg  14679
  Copyright terms: Public domain W3C validator