ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2strbasg GIF version

Theorem 2strbasg 12496
Description: The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
Hypotheses
Ref Expression
2str.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}
2str.e 𝐸 = Slot 𝑁
2str.l 1 < 𝑁
2str.n 𝑁 ∈ ℕ
Assertion
Ref Expression
2strbasg ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))

Proof of Theorem 2strbasg
StepHypRef Expression
1 baseslid 12450 . 2 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
2 2str.g . . 3 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}
3 basendxnn 12449 . . . . . 6 (Base‘ndx) ∈ ℕ
43a1i 9 . . . . 5 ((𝐵𝑉+𝑊) → (Base‘ndx) ∈ ℕ)
5 simpl 108 . . . . 5 ((𝐵𝑉+𝑊) → 𝐵𝑉)
6 opexg 4206 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ 𝐵𝑉) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
74, 5, 6syl2anc 409 . . . 4 ((𝐵𝑉+𝑊) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
8 2str.e . . . . . . . 8 𝐸 = Slot 𝑁
9 2str.n . . . . . . . 8 𝑁 ∈ ℕ
108, 9ndxarg 12417 . . . . . . 7 (𝐸‘ndx) = 𝑁
1110, 9eqeltri 2239 . . . . . 6 (𝐸‘ndx) ∈ ℕ
1211a1i 9 . . . . 5 ((𝐵𝑉+𝑊) → (𝐸‘ndx) ∈ ℕ)
13 simpr 109 . . . . 5 ((𝐵𝑉+𝑊) → +𝑊)
14 opexg 4206 . . . . 5 (((𝐸‘ndx) ∈ ℕ ∧ +𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ V)
1512, 13, 14syl2anc 409 . . . 4 ((𝐵𝑉+𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ V)
16 prexg 4189 . . . 4 ((⟨(Base‘ndx), 𝐵⟩ ∈ V ∧ ⟨(𝐸‘ndx), + ⟩ ∈ V) → {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩} ∈ V)
177, 15, 16syl2anc 409 . . 3 ((𝐵𝑉+𝑊) → {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩} ∈ V)
182, 17eqeltrid 2253 . 2 ((𝐵𝑉+𝑊) → 𝐺 ∈ V)
193nnrei 8866 . . . . . 6 (Base‘ndx) ∈ ℝ
20 2str.l . . . . . . 7 1 < 𝑁
21 basendx 12448 . . . . . . 7 (Base‘ndx) = 1
2220, 21, 103brtr4i 4012 . . . . . 6 (Base‘ndx) < (𝐸‘ndx)
2319, 22ltneii 7995 . . . . 5 (Base‘ndx) ≠ (𝐸‘ndx)
2423a1i 9 . . . 4 ((𝐵𝑉+𝑊) → (Base‘ndx) ≠ (𝐸‘ndx))
25 funprg 5238 . . . 4 ((((Base‘ndx) ∈ ℕ ∧ (𝐸‘ndx) ∈ ℕ) ∧ (𝐵𝑉+𝑊) ∧ (Base‘ndx) ≠ (𝐸‘ndx)) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
264, 12, 5, 13, 24, 25syl221anc 1239 . . 3 ((𝐵𝑉+𝑊) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
272funeqi 5209 . . 3 (Fun 𝐺 ↔ Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
2826, 27sylibr 133 . 2 ((𝐵𝑉+𝑊) → Fun 𝐺)
29 prid1g 3680 . . . 4 (⟨(Base‘ndx), 𝐵⟩ ∈ V → ⟨(Base‘ndx), 𝐵⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
307, 29syl 14 . . 3 ((𝐵𝑉+𝑊) → ⟨(Base‘ndx), 𝐵⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
3130, 2eleqtrrdi 2260 . 2 ((𝐵𝑉+𝑊) → ⟨(Base‘ndx), 𝐵⟩ ∈ 𝐺)
321, 18, 28, 31strslfvd 12435 1 ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wne 2336  Vcvv 2726  {cpr 3577  cop 3579   class class class wbr 3982  Fun wfun 5182  cfv 5188  1c1 7754   < clt 7933  cn 8857  ndxcnx 12391  Slot cslot 12393  Basecbs 12394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-pre-ltirr 7865
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-pnf 7935  df-mnf 7936  df-ltxr 7938  df-inn 8858  df-ndx 12397  df-slot 12398  df-base 12400
This theorem is referenced by:  grpbaseg  12503  eltpsg  12678
  Copyright terms: Public domain W3C validator