ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettx GIF version

Theorem xmettx 14830
Description: The maximum metric (Chebyshev distance) on the product of two sets, expressed as a binary topological product. (Contributed by Jim Kingdon, 11-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
xmetxp.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
xmetxp.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
xmettx.j 𝐽 = (MetOpen‘𝑀)
xmettx.k 𝐾 = (MetOpen‘𝑁)
xmettx.l 𝐿 = (MetOpen‘𝑃)
Assertion
Ref Expression
xmettx (𝜑𝐿 = (𝐽 ×t 𝐾))
Distinct variable groups:   𝑢,𝑀,𝑣   𝑢,𝑁,𝑣   𝑢,𝑋,𝑣   𝑢,𝑌,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝑃(𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑣,𝑢)   𝐿(𝑣,𝑢)

Proof of Theorem xmettx
Dummy variables 𝑗 𝑘 𝑚 𝑛 𝑥 𝑦 𝑟 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . 3 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
2 xmetxp.1 . . 3 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 xmetxp.2 . . 3 (𝜑𝑁 ∈ (∞Met‘𝑌))
4 xmettx.j . . 3 𝐽 = (MetOpen‘𝑀)
5 xmettx.k . . 3 𝐾 = (MetOpen‘𝑁)
6 xmettx.l . . 3 𝐿 = (MetOpen‘𝑃)
71, 2, 3, 4, 5, 6xmettxlem 14829 . 2 (𝜑𝐿 ⊆ (𝐽 ×t 𝐾))
8 eqid 2196 . . . . . . . . . . . 12 (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) = (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))
98elrnmpog 6039 . . . . . . . . . . 11 (𝑤 ∈ V → (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠)))
109elv 2767 . . . . . . . . . 10 (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
1110biimpi 120 . . . . . . . . 9 (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) → ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
1211adantl 277 . . . . . . . 8 ((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) → ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
13 xpeq1 4678 . . . . . . . . . 10 (𝑟 = 𝑥 → (𝑟 × 𝑠) = (𝑥 × 𝑠))
1413eqeq2d 2208 . . . . . . . . 9 (𝑟 = 𝑥 → (𝑤 = (𝑟 × 𝑠) ↔ 𝑤 = (𝑥 × 𝑠)))
15 xpeq2 4679 . . . . . . . . . 10 (𝑠 = 𝑦 → (𝑥 × 𝑠) = (𝑥 × 𝑦))
1615eqeq2d 2208 . . . . . . . . 9 (𝑠 = 𝑦 → (𝑤 = (𝑥 × 𝑠) ↔ 𝑤 = (𝑥 × 𝑦)))
1714, 16cbvrex2v 2743 . . . . . . . 8 (∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠) ↔ ∃𝑥𝐽𝑦𝐾 𝑤 = (𝑥 × 𝑦))
1812, 17sylib 122 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) → ∃𝑥𝐽𝑦𝐾 𝑤 = (𝑥 × 𝑦))
19 simpr 110 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑤 = (𝑥 × 𝑦)) → 𝑤 = (𝑥 × 𝑦))
20 simplll 533 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑤 = (𝑥 × 𝑦)) → 𝜑)
21 simplrl 535 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑤 = (𝑥 × 𝑦)) → 𝑥𝐽)
22 simplrr 536 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑤 = (𝑥 × 𝑦)) → 𝑦𝐾)
234mopntopon 14763 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
242, 23syl 14 . . . . . . . . . . . . . . . . 17 (𝜑𝐽 ∈ (TopOn‘𝑋))
2524adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → 𝐽 ∈ (TopOn‘𝑋))
26 simprl 529 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → 𝑥𝐽)
27 toponss 14346 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
2825, 26, 27syl2anc 411 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → 𝑥𝑋)
295mopntopon 14763 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
303, 29syl 14 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ (TopOn‘𝑌))
3130adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → 𝐾 ∈ (TopOn‘𝑌))
32 simprr 531 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → 𝑦𝐾)
33 toponss 14346 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑦𝐾) → 𝑦𝑌)
3431, 32, 33syl2anc 411 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → 𝑦𝑌)
35 xpss12 4771 . . . . . . . . . . . . . . 15 ((𝑥𝑋𝑦𝑌) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
3628, 34, 35syl2anc 411 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
371, 2, 3xmetxp 14827 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
38 unirnbl 14743 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → ran (ball‘𝑃) = (𝑋 × 𝑌))
3937, 38syl 14 . . . . . . . . . . . . . . 15 (𝜑 ran (ball‘𝑃) = (𝑋 × 𝑌))
4039adantr 276 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → ran (ball‘𝑃) = (𝑋 × 𝑌))
4136, 40sseqtrrd 3223 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (𝑥 × 𝑦) ⊆ ran (ball‘𝑃))
422ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → 𝑀 ∈ (∞Met‘𝑋))
43 simplrl 535 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → 𝑥𝐽)
44 xp1st 6232 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑥 × 𝑦) → (1st𝑗) ∈ 𝑥)
4544adantl 277 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → (1st𝑗) ∈ 𝑥)
464mopni2 14803 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝐽 ∧ (1st𝑗) ∈ 𝑥) → ∃𝑚 ∈ ℝ+ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)
4742, 43, 45, 46syl3anc 1249 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → ∃𝑚 ∈ ℝ+ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)
483ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → 𝑁 ∈ (∞Met‘𝑌))
49 simplrr 536 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → 𝑦𝐾)
50 xp2nd 6233 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (𝑥 × 𝑦) → (2nd𝑗) ∈ 𝑦)
5150adantl 277 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → (2nd𝑗) ∈ 𝑦)
525mopni2 14803 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑦𝐾 ∧ (2nd𝑗) ∈ 𝑦) → ∃𝑛 ∈ ℝ+ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)
5348, 49, 51, 52syl3anc 1249 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → ∃𝑛 ∈ ℝ+ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)
5453adantr 276 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) → ∃𝑛 ∈ ℝ+ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)
55 blf 14730 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (ball‘𝑃):((𝑋 × 𝑌) × ℝ*)⟶𝒫 (𝑋 × 𝑌))
5637, 55syl 14 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ball‘𝑃):((𝑋 × 𝑌) × ℝ*)⟶𝒫 (𝑋 × 𝑌))
5756ffnd 5411 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ball‘𝑃) Fn ((𝑋 × 𝑌) × ℝ*))
5857ad4antr 494 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (ball‘𝑃) Fn ((𝑋 × 𝑌) × ℝ*))
5936sselda 3184 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → 𝑗 ∈ (𝑋 × 𝑌))
6059ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑗 ∈ (𝑋 × 𝑌))
61 rpxr 9753 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℝ+𝑚 ∈ ℝ*)
6261ad2antrl 490 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) → 𝑚 ∈ ℝ*)
6362adantr 276 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑚 ∈ ℝ*)
64 rpxr 9753 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℝ+𝑛 ∈ ℝ*)
6564ad2antrl 490 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑛 ∈ ℝ*)
66 xrmincl 11448 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℝ*𝑛 ∈ ℝ*) → inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ*)
6763, 65, 66syl2anc 411 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ*)
68 fnovrn 6075 . . . . . . . . . . . . . . . . . 18 (((ball‘𝑃) Fn ((𝑋 × 𝑌) × ℝ*) ∧ 𝑗 ∈ (𝑋 × 𝑌) ∧ inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ*) → (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ∈ ran (ball‘𝑃))
6958, 60, 67, 68syl3anc 1249 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ∈ ran (ball‘𝑃))
70 eleq2 2260 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) → (𝑗𝑘𝑗 ∈ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < ))))
71 sseq1 3207 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) → (𝑘 ⊆ (𝑥 × 𝑦) ↔ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ (𝑥 × 𝑦)))
7270, 71anbi12d 473 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) → ((𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)) ↔ (𝑗 ∈ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ∧ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ (𝑥 × 𝑦))))
7372adantl 277 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) ∧ 𝑘 = (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < ))) → ((𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)) ↔ (𝑗 ∈ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ∧ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ (𝑥 × 𝑦))))
7437ad4antr 494 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
75 simplrl 535 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑚 ∈ ℝ+)
76 simprl 529 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑛 ∈ ℝ+)
77 xrminrpcl 11456 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℝ+𝑛 ∈ ℝ+) → inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ+)
7875, 76, 77syl2anc 411 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ+)
79 blcntr 14736 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) ∧ 𝑗 ∈ (𝑋 × 𝑌) ∧ inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ+) → 𝑗 ∈ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )))
8074, 60, 78, 79syl3anc 1249 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑗 ∈ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )))
8142ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑀 ∈ (∞Met‘𝑋))
8248ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑁 ∈ (∞Met‘𝑌))
831, 81, 82, 67, 60xmetxpbl 14828 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) = (((1st𝑗)(ball‘𝑀)inf({𝑚, 𝑛}, ℝ*, < )) × ((2nd𝑗)(ball‘𝑁)inf({𝑚, 𝑛}, ℝ*, < ))))
8428adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → 𝑥𝑋)
8584, 45sseldd 3185 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → (1st𝑗) ∈ 𝑋)
8685ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (1st𝑗) ∈ 𝑋)
87 xrmin1inf 11449 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℝ*𝑛 ∈ ℝ*) → inf({𝑚, 𝑛}, ℝ*, < ) ≤ 𝑚)
8863, 65, 87syl2anc 411 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → inf({𝑚, 𝑛}, ℝ*, < ) ≤ 𝑚)
89 ssbl 14746 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ (∞Met‘𝑋) ∧ (1st𝑗) ∈ 𝑋) ∧ (inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ*𝑚 ∈ ℝ*) ∧ inf({𝑚, 𝑛}, ℝ*, < ) ≤ 𝑚) → ((1st𝑗)(ball‘𝑀)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ ((1st𝑗)(ball‘𝑀)𝑚))
9081, 86, 67, 63, 88, 89syl221anc 1260 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → ((1st𝑗)(ball‘𝑀)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ ((1st𝑗)(ball‘𝑀)𝑚))
91 simplrr 536 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)
9290, 91sstrd 3194 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → ((1st𝑗)(ball‘𝑀)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ 𝑥)
9334adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → 𝑦𝑌)
9493, 51sseldd 3185 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → (2nd𝑗) ∈ 𝑌)
9594ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (2nd𝑗) ∈ 𝑌)
96 xrmin2inf 11450 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℝ*𝑛 ∈ ℝ*) → inf({𝑚, 𝑛}, ℝ*, < ) ≤ 𝑛)
9763, 65, 96syl2anc 411 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → inf({𝑚, 𝑛}, ℝ*, < ) ≤ 𝑛)
98 ssbl 14746 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd𝑗) ∈ 𝑌) ∧ (inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ*𝑛 ∈ ℝ*) ∧ inf({𝑚, 𝑛}, ℝ*, < ) ≤ 𝑛) → ((2nd𝑗)(ball‘𝑁)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ ((2nd𝑗)(ball‘𝑁)𝑛))
9982, 95, 67, 65, 97, 98syl221anc 1260 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → ((2nd𝑗)(ball‘𝑁)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ ((2nd𝑗)(ball‘𝑁)𝑛))
100 simprr 531 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)
10199, 100sstrd 3194 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → ((2nd𝑗)(ball‘𝑁)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ 𝑦)
102 xpss12 4771 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑗)(ball‘𝑀)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ 𝑥 ∧ ((2nd𝑗)(ball‘𝑁)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ 𝑦) → (((1st𝑗)(ball‘𝑀)inf({𝑚, 𝑛}, ℝ*, < )) × ((2nd𝑗)(ball‘𝑁)inf({𝑚, 𝑛}, ℝ*, < ))) ⊆ (𝑥 × 𝑦))
10392, 101, 102syl2anc 411 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (((1st𝑗)(ball‘𝑀)inf({𝑚, 𝑛}, ℝ*, < )) × ((2nd𝑗)(ball‘𝑁)inf({𝑚, 𝑛}, ℝ*, < ))) ⊆ (𝑥 × 𝑦))
10483, 103eqsstrd 3220 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ (𝑥 × 𝑦))
10580, 104jca 306 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (𝑗 ∈ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ∧ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ (𝑥 × 𝑦)))
10669, 73, 105rspcedvd 2874 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → ∃𝑘 ∈ ran (ball‘𝑃)(𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)))
10754, 106rexlimddv 2619 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) → ∃𝑘 ∈ ran (ball‘𝑃)(𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)))
10847, 107rexlimddv 2619 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → ∃𝑘 ∈ ran (ball‘𝑃)(𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)))
109108ralrimiva 2570 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → ∀𝑗 ∈ (𝑥 × 𝑦)∃𝑘 ∈ ran (ball‘𝑃)(𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)))
11041, 109jca 306 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → ((𝑥 × 𝑦) ⊆ ran (ball‘𝑃) ∧ ∀𝑗 ∈ (𝑥 × 𝑦)∃𝑘 ∈ ran (ball‘𝑃)(𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦))))
111 blex 14707 . . . . . . . . . . . . . . 15 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (ball‘𝑃) ∈ V)
11237, 111syl 14 . . . . . . . . . . . . . 14 (𝜑 → (ball‘𝑃) ∈ V)
113112adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (ball‘𝑃) ∈ V)
114 rnexg 4932 . . . . . . . . . . . . 13 ((ball‘𝑃) ∈ V → ran (ball‘𝑃) ∈ V)
115 eltg2 14373 . . . . . . . . . . . . 13 (ran (ball‘𝑃) ∈ V → ((𝑥 × 𝑦) ∈ (topGen‘ran (ball‘𝑃)) ↔ ((𝑥 × 𝑦) ⊆ ran (ball‘𝑃) ∧ ∀𝑗 ∈ (𝑥 × 𝑦)∃𝑘 ∈ ran (ball‘𝑃)(𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)))))
116113, 114, 1153syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → ((𝑥 × 𝑦) ∈ (topGen‘ran (ball‘𝑃)) ↔ ((𝑥 × 𝑦) ⊆ ran (ball‘𝑃) ∧ ∀𝑗 ∈ (𝑥 × 𝑦)∃𝑘 ∈ ran (ball‘𝑃)(𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)))))
117110, 116mpbird 167 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (𝑥 × 𝑦) ∈ (topGen‘ran (ball‘𝑃)))
11820, 21, 22, 117syl12anc 1247 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑤 = (𝑥 × 𝑦)) → (𝑥 × 𝑦) ∈ (topGen‘ran (ball‘𝑃)))
11919, 118eqeltrd 2273 . . . . . . . . 9 ((((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑤 = (𝑥 × 𝑦)) → 𝑤 ∈ (topGen‘ran (ball‘𝑃)))
120119ex 115 . . . . . . . 8 (((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ∧ (𝑥𝐽𝑦𝐾)) → (𝑤 = (𝑥 × 𝑦) → 𝑤 ∈ (topGen‘ran (ball‘𝑃))))
121120rexlimdvva 2622 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) → (∃𝑥𝐽𝑦𝐾 𝑤 = (𝑥 × 𝑦) → 𝑤 ∈ (topGen‘ran (ball‘𝑃))))
12218, 121mpd 13 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) → 𝑤 ∈ (topGen‘ran (ball‘𝑃)))
123122ex 115 . . . . 5 (𝜑 → (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) → 𝑤 ∈ (topGen‘ran (ball‘𝑃))))
124123ssrdv 3190 . . . 4 (𝜑 → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (ball‘𝑃)))
1254mopntop 14764 . . . . . . . 8 (𝑀 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
1262, 125syl 14 . . . . . . 7 (𝜑𝐽 ∈ Top)
1275mopntop 14764 . . . . . . . 8 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 ∈ Top)
1283, 127syl 14 . . . . . . 7 (𝜑𝐾 ∈ Top)
129 mpoexga 6279 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
130126, 128, 129syl2anc 411 . . . . . 6 (𝜑 → (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
131 rnexg 4932 . . . . . 6 ((𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
132130, 131syl 14 . . . . 5 (𝜑 → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
13337, 111, 1143syl 17 . . . . 5 (𝜑 → ran (ball‘𝑃) ∈ V)
134 tgss3 14398 . . . . 5 ((ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V ∧ ran (ball‘𝑃) ∈ V) → ((topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ⊆ (topGen‘ran (ball‘𝑃)) ↔ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (ball‘𝑃))))
135132, 133, 134syl2anc 411 . . . 4 (𝜑 → ((topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ⊆ (topGen‘ran (ball‘𝑃)) ↔ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (ball‘𝑃))))
136124, 135mpbird 167 . . 3 (𝜑 → (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ⊆ (topGen‘ran (ball‘𝑃)))
137 eqid 2196 . . . . 5 ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) = ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))
138137txval 14575 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
139126, 128, 138syl2anc 411 . . 3 (𝜑 → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
1406mopnval 14762 . . . 4 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → 𝐿 = (topGen‘ran (ball‘𝑃)))
14137, 140syl 14 . . 3 (𝜑𝐿 = (topGen‘ran (ball‘𝑃)))
142136, 139, 1413sstr4d 3229 . 2 (𝜑 → (𝐽 ×t 𝐾) ⊆ 𝐿)
1437, 142eqssd 3201 1 (𝜑𝐿 = (𝐽 ×t 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  wss 3157  𝒫 cpw 3606  {cpr 3624   cuni 3840   class class class wbr 4034   × cxp 4662  ran crn 4665   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5925  cmpo 5927  1st c1st 6205  2nd c2nd 6206  supcsup 7057  infcinf 7058  *cxr 8077   < clt 8078  cle 8079  +crp 9745  topGenctg 12956  ∞Metcxmet 14168  ballcbl 14170  MetOpencmopn 14173  Topctop 14317  TopOnctopon 14330   ×t ctx 14572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363  df-tx 14573
This theorem is referenced by:  txmetcnp  14838
  Copyright terms: Public domain W3C validator