ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettx GIF version

Theorem xmettx 15178
Description: The maximum metric (Chebyshev distance) on the product of two sets, expressed as a binary topological product. (Contributed by Jim Kingdon, 11-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
xmetxp.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
xmetxp.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
xmettx.j 𝐽 = (MetOpen‘𝑀)
xmettx.k 𝐾 = (MetOpen‘𝑁)
xmettx.l 𝐿 = (MetOpen‘𝑃)
Assertion
Ref Expression
xmettx (𝜑𝐿 = (𝐽 ×t 𝐾))
Distinct variable groups:   𝑢,𝑀,𝑣   𝑢,𝑁,𝑣   𝑢,𝑋,𝑣   𝑢,𝑌,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝑃(𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑣,𝑢)   𝐿(𝑣,𝑢)

Proof of Theorem xmettx
Dummy variables 𝑗 𝑘 𝑚 𝑛 𝑥 𝑦 𝑟 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . 3 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
2 xmetxp.1 . . 3 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 xmetxp.2 . . 3 (𝜑𝑁 ∈ (∞Met‘𝑌))
4 xmettx.j . . 3 𝐽 = (MetOpen‘𝑀)
5 xmettx.k . . 3 𝐾 = (MetOpen‘𝑁)
6 xmettx.l . . 3 𝐿 = (MetOpen‘𝑃)
71, 2, 3, 4, 5, 6xmettxlem 15177 . 2 (𝜑𝐿 ⊆ (𝐽 ×t 𝐾))
8 eqid 2229 . . . . . . . . . . . 12 (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) = (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))
98elrnmpog 6116 . . . . . . . . . . 11 (𝑤 ∈ V → (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠)))
109elv 2803 . . . . . . . . . 10 (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ↔ ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
1110biimpi 120 . . . . . . . . 9 (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) → ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
1211adantl 277 . . . . . . . 8 ((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) → ∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠))
13 xpeq1 4732 . . . . . . . . . 10 (𝑟 = 𝑥 → (𝑟 × 𝑠) = (𝑥 × 𝑠))
1413eqeq2d 2241 . . . . . . . . 9 (𝑟 = 𝑥 → (𝑤 = (𝑟 × 𝑠) ↔ 𝑤 = (𝑥 × 𝑠)))
15 xpeq2 4733 . . . . . . . . . 10 (𝑠 = 𝑦 → (𝑥 × 𝑠) = (𝑥 × 𝑦))
1615eqeq2d 2241 . . . . . . . . 9 (𝑠 = 𝑦 → (𝑤 = (𝑥 × 𝑠) ↔ 𝑤 = (𝑥 × 𝑦)))
1714, 16cbvrex2v 2779 . . . . . . . 8 (∃𝑟𝐽𝑠𝐾 𝑤 = (𝑟 × 𝑠) ↔ ∃𝑥𝐽𝑦𝐾 𝑤 = (𝑥 × 𝑦))
1812, 17sylib 122 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) → ∃𝑥𝐽𝑦𝐾 𝑤 = (𝑥 × 𝑦))
19 simpr 110 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑤 = (𝑥 × 𝑦)) → 𝑤 = (𝑥 × 𝑦))
20 simplll 533 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑤 = (𝑥 × 𝑦)) → 𝜑)
21 simplrl 535 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑤 = (𝑥 × 𝑦)) → 𝑥𝐽)
22 simplrr 536 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑤 = (𝑥 × 𝑦)) → 𝑦𝐾)
234mopntopon 15111 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
242, 23syl 14 . . . . . . . . . . . . . . . . 17 (𝜑𝐽 ∈ (TopOn‘𝑋))
2524adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → 𝐽 ∈ (TopOn‘𝑋))
26 simprl 529 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → 𝑥𝐽)
27 toponss 14694 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
2825, 26, 27syl2anc 411 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → 𝑥𝑋)
295mopntopon 15111 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
303, 29syl 14 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ (TopOn‘𝑌))
3130adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → 𝐾 ∈ (TopOn‘𝑌))
32 simprr 531 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → 𝑦𝐾)
33 toponss 14694 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑦𝐾) → 𝑦𝑌)
3431, 32, 33syl2anc 411 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → 𝑦𝑌)
35 xpss12 4825 . . . . . . . . . . . . . . 15 ((𝑥𝑋𝑦𝑌) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
3628, 34, 35syl2anc 411 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
371, 2, 3xmetxp 15175 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
38 unirnbl 15091 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → ran (ball‘𝑃) = (𝑋 × 𝑌))
3937, 38syl 14 . . . . . . . . . . . . . . 15 (𝜑 ran (ball‘𝑃) = (𝑋 × 𝑌))
4039adantr 276 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → ran (ball‘𝑃) = (𝑋 × 𝑌))
4136, 40sseqtrrd 3263 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (𝑥 × 𝑦) ⊆ ran (ball‘𝑃))
422ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → 𝑀 ∈ (∞Met‘𝑋))
43 simplrl 535 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → 𝑥𝐽)
44 xp1st 6309 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑥 × 𝑦) → (1st𝑗) ∈ 𝑥)
4544adantl 277 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → (1st𝑗) ∈ 𝑥)
464mopni2 15151 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝐽 ∧ (1st𝑗) ∈ 𝑥) → ∃𝑚 ∈ ℝ+ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)
4742, 43, 45, 46syl3anc 1271 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → ∃𝑚 ∈ ℝ+ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)
483ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → 𝑁 ∈ (∞Met‘𝑌))
49 simplrr 536 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → 𝑦𝐾)
50 xp2nd 6310 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (𝑥 × 𝑦) → (2nd𝑗) ∈ 𝑦)
5150adantl 277 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → (2nd𝑗) ∈ 𝑦)
525mopni2 15151 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑦𝐾 ∧ (2nd𝑗) ∈ 𝑦) → ∃𝑛 ∈ ℝ+ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)
5348, 49, 51, 52syl3anc 1271 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → ∃𝑛 ∈ ℝ+ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)
5453adantr 276 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) → ∃𝑛 ∈ ℝ+ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)
55 blf 15078 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (ball‘𝑃):((𝑋 × 𝑌) × ℝ*)⟶𝒫 (𝑋 × 𝑌))
5637, 55syl 14 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ball‘𝑃):((𝑋 × 𝑌) × ℝ*)⟶𝒫 (𝑋 × 𝑌))
5756ffnd 5473 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ball‘𝑃) Fn ((𝑋 × 𝑌) × ℝ*))
5857ad4antr 494 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (ball‘𝑃) Fn ((𝑋 × 𝑌) × ℝ*))
5936sselda 3224 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → 𝑗 ∈ (𝑋 × 𝑌))
6059ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑗 ∈ (𝑋 × 𝑌))
61 rpxr 9853 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℝ+𝑚 ∈ ℝ*)
6261ad2antrl 490 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) → 𝑚 ∈ ℝ*)
6362adantr 276 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑚 ∈ ℝ*)
64 rpxr 9853 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℝ+𝑛 ∈ ℝ*)
6564ad2antrl 490 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑛 ∈ ℝ*)
66 xrmincl 11772 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℝ*𝑛 ∈ ℝ*) → inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ*)
6763, 65, 66syl2anc 411 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ*)
68 fnovrn 6152 . . . . . . . . . . . . . . . . . 18 (((ball‘𝑃) Fn ((𝑋 × 𝑌) × ℝ*) ∧ 𝑗 ∈ (𝑋 × 𝑌) ∧ inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ*) → (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ∈ ran (ball‘𝑃))
6958, 60, 67, 68syl3anc 1271 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ∈ ran (ball‘𝑃))
70 eleq2 2293 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) → (𝑗𝑘𝑗 ∈ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < ))))
71 sseq1 3247 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) → (𝑘 ⊆ (𝑥 × 𝑦) ↔ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ (𝑥 × 𝑦)))
7270, 71anbi12d 473 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) → ((𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)) ↔ (𝑗 ∈ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ∧ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ (𝑥 × 𝑦))))
7372adantl 277 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) ∧ 𝑘 = (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < ))) → ((𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)) ↔ (𝑗 ∈ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ∧ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ (𝑥 × 𝑦))))
7437ad4antr 494 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
75 simplrl 535 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑚 ∈ ℝ+)
76 simprl 529 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑛 ∈ ℝ+)
77 xrminrpcl 11780 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℝ+𝑛 ∈ ℝ+) → inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ+)
7875, 76, 77syl2anc 411 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ+)
79 blcntr 15084 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) ∧ 𝑗 ∈ (𝑋 × 𝑌) ∧ inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ+) → 𝑗 ∈ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )))
8074, 60, 78, 79syl3anc 1271 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑗 ∈ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )))
8142ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑀 ∈ (∞Met‘𝑋))
8248ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → 𝑁 ∈ (∞Met‘𝑌))
831, 81, 82, 67, 60xmetxpbl 15176 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) = (((1st𝑗)(ball‘𝑀)inf({𝑚, 𝑛}, ℝ*, < )) × ((2nd𝑗)(ball‘𝑁)inf({𝑚, 𝑛}, ℝ*, < ))))
8428adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → 𝑥𝑋)
8584, 45sseldd 3225 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → (1st𝑗) ∈ 𝑋)
8685ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (1st𝑗) ∈ 𝑋)
87 xrmin1inf 11773 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℝ*𝑛 ∈ ℝ*) → inf({𝑚, 𝑛}, ℝ*, < ) ≤ 𝑚)
8863, 65, 87syl2anc 411 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → inf({𝑚, 𝑛}, ℝ*, < ) ≤ 𝑚)
89 ssbl 15094 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ (∞Met‘𝑋) ∧ (1st𝑗) ∈ 𝑋) ∧ (inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ*𝑚 ∈ ℝ*) ∧ inf({𝑚, 𝑛}, ℝ*, < ) ≤ 𝑚) → ((1st𝑗)(ball‘𝑀)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ ((1st𝑗)(ball‘𝑀)𝑚))
9081, 86, 67, 63, 88, 89syl221anc 1282 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → ((1st𝑗)(ball‘𝑀)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ ((1st𝑗)(ball‘𝑀)𝑚))
91 simplrr 536 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)
9290, 91sstrd 3234 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → ((1st𝑗)(ball‘𝑀)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ 𝑥)
9334adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → 𝑦𝑌)
9493, 51sseldd 3225 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → (2nd𝑗) ∈ 𝑌)
9594ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (2nd𝑗) ∈ 𝑌)
96 xrmin2inf 11774 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℝ*𝑛 ∈ ℝ*) → inf({𝑚, 𝑛}, ℝ*, < ) ≤ 𝑛)
9763, 65, 96syl2anc 411 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → inf({𝑚, 𝑛}, ℝ*, < ) ≤ 𝑛)
98 ssbl 15094 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd𝑗) ∈ 𝑌) ∧ (inf({𝑚, 𝑛}, ℝ*, < ) ∈ ℝ*𝑛 ∈ ℝ*) ∧ inf({𝑚, 𝑛}, ℝ*, < ) ≤ 𝑛) → ((2nd𝑗)(ball‘𝑁)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ ((2nd𝑗)(ball‘𝑁)𝑛))
9982, 95, 67, 65, 97, 98syl221anc 1282 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → ((2nd𝑗)(ball‘𝑁)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ ((2nd𝑗)(ball‘𝑁)𝑛))
100 simprr 531 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)
10199, 100sstrd 3234 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → ((2nd𝑗)(ball‘𝑁)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ 𝑦)
102 xpss12 4825 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑗)(ball‘𝑀)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ 𝑥 ∧ ((2nd𝑗)(ball‘𝑁)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ 𝑦) → (((1st𝑗)(ball‘𝑀)inf({𝑚, 𝑛}, ℝ*, < )) × ((2nd𝑗)(ball‘𝑁)inf({𝑚, 𝑛}, ℝ*, < ))) ⊆ (𝑥 × 𝑦))
10392, 101, 102syl2anc 411 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (((1st𝑗)(ball‘𝑀)inf({𝑚, 𝑛}, ℝ*, < )) × ((2nd𝑗)(ball‘𝑁)inf({𝑚, 𝑛}, ℝ*, < ))) ⊆ (𝑥 × 𝑦))
10483, 103eqsstrd 3260 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ (𝑥 × 𝑦))
10580, 104jca 306 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → (𝑗 ∈ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ∧ (𝑗(ball‘𝑃)inf({𝑚, 𝑛}, ℝ*, < )) ⊆ (𝑥 × 𝑦)))
10669, 73, 105rspcedvd 2913 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) ∧ (𝑛 ∈ ℝ+ ∧ ((2nd𝑗)(ball‘𝑁)𝑛) ⊆ 𝑦)) → ∃𝑘 ∈ ran (ball‘𝑃)(𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)))
10754, 106rexlimddv 2653 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) ∧ (𝑚 ∈ ℝ+ ∧ ((1st𝑗)(ball‘𝑀)𝑚) ⊆ 𝑥)) → ∃𝑘 ∈ ran (ball‘𝑃)(𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)))
10847, 107rexlimddv 2653 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑗 ∈ (𝑥 × 𝑦)) → ∃𝑘 ∈ ran (ball‘𝑃)(𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)))
109108ralrimiva 2603 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → ∀𝑗 ∈ (𝑥 × 𝑦)∃𝑘 ∈ ran (ball‘𝑃)(𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)))
11041, 109jca 306 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → ((𝑥 × 𝑦) ⊆ ran (ball‘𝑃) ∧ ∀𝑗 ∈ (𝑥 × 𝑦)∃𝑘 ∈ ran (ball‘𝑃)(𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦))))
111 blex 15055 . . . . . . . . . . . . . . 15 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → (ball‘𝑃) ∈ V)
11237, 111syl 14 . . . . . . . . . . . . . 14 (𝜑 → (ball‘𝑃) ∈ V)
113112adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (ball‘𝑃) ∈ V)
114 rnexg 4988 . . . . . . . . . . . . 13 ((ball‘𝑃) ∈ V → ran (ball‘𝑃) ∈ V)
115 eltg2 14721 . . . . . . . . . . . . 13 (ran (ball‘𝑃) ∈ V → ((𝑥 × 𝑦) ∈ (topGen‘ran (ball‘𝑃)) ↔ ((𝑥 × 𝑦) ⊆ ran (ball‘𝑃) ∧ ∀𝑗 ∈ (𝑥 × 𝑦)∃𝑘 ∈ ran (ball‘𝑃)(𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)))))
116113, 114, 1153syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → ((𝑥 × 𝑦) ∈ (topGen‘ran (ball‘𝑃)) ↔ ((𝑥 × 𝑦) ⊆ ran (ball‘𝑃) ∧ ∀𝑗 ∈ (𝑥 × 𝑦)∃𝑘 ∈ ran (ball‘𝑃)(𝑗𝑘𝑘 ⊆ (𝑥 × 𝑦)))))
117110, 116mpbird 167 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (𝑥 × 𝑦) ∈ (topGen‘ran (ball‘𝑃)))
11820, 21, 22, 117syl12anc 1269 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑤 = (𝑥 × 𝑦)) → (𝑥 × 𝑦) ∈ (topGen‘ran (ball‘𝑃)))
11919, 118eqeltrd 2306 . . . . . . . . 9 ((((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ∧ (𝑥𝐽𝑦𝐾)) ∧ 𝑤 = (𝑥 × 𝑦)) → 𝑤 ∈ (topGen‘ran (ball‘𝑃)))
120119ex 115 . . . . . . . 8 (((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ∧ (𝑥𝐽𝑦𝐾)) → (𝑤 = (𝑥 × 𝑦) → 𝑤 ∈ (topGen‘ran (ball‘𝑃))))
121120rexlimdvva 2656 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) → (∃𝑥𝐽𝑦𝐾 𝑤 = (𝑥 × 𝑦) → 𝑤 ∈ (topGen‘ran (ball‘𝑃))))
12218, 121mpd 13 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) → 𝑤 ∈ (topGen‘ran (ball‘𝑃)))
123122ex 115 . . . . 5 (𝜑 → (𝑤 ∈ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) → 𝑤 ∈ (topGen‘ran (ball‘𝑃))))
124123ssrdv 3230 . . . 4 (𝜑 → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (ball‘𝑃)))
1254mopntop 15112 . . . . . . . 8 (𝑀 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
1262, 125syl 14 . . . . . . 7 (𝜑𝐽 ∈ Top)
1275mopntop 15112 . . . . . . . 8 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 ∈ Top)
1283, 127syl 14 . . . . . . 7 (𝜑𝐾 ∈ Top)
129 mpoexga 6356 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
130126, 128, 129syl2anc 411 . . . . . 6 (𝜑 → (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
131 rnexg 4988 . . . . . 6 ((𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
132130, 131syl 14 . . . . 5 (𝜑 → ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V)
13337, 111, 1143syl 17 . . . . 5 (𝜑 → ran (ball‘𝑃) ∈ V)
134 tgss3 14746 . . . . 5 ((ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ∈ V ∧ ran (ball‘𝑃) ∈ V) → ((topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ⊆ (topGen‘ran (ball‘𝑃)) ↔ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (ball‘𝑃))))
135132, 133, 134syl2anc 411 . . . 4 (𝜑 → ((topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ⊆ (topGen‘ran (ball‘𝑃)) ↔ ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) ⊆ (topGen‘ran (ball‘𝑃))))
136124, 135mpbird 167 . . 3 (𝜑 → (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))) ⊆ (topGen‘ran (ball‘𝑃)))
137 eqid 2229 . . . . 5 ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠)) = ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))
138137txval 14923 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
139126, 128, 138syl2anc 411 . . 3 (𝜑 → (𝐽 ×t 𝐾) = (topGen‘ran (𝑟𝐽, 𝑠𝐾 ↦ (𝑟 × 𝑠))))
1406mopnval 15110 . . . 4 (𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) → 𝐿 = (topGen‘ran (ball‘𝑃)))
14137, 140syl 14 . . 3 (𝜑𝐿 = (topGen‘ran (ball‘𝑃)))
142136, 139, 1413sstr4d 3269 . 2 (𝜑 → (𝐽 ×t 𝐾) ⊆ 𝐿)
1437, 142eqssd 3241 1 (𝜑𝐿 = (𝐽 ×t 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wrex 2509  Vcvv 2799  wss 3197  𝒫 cpw 3649  {cpr 3667   cuni 3887   class class class wbr 4082   × cxp 4716  ran crn 4719   Fn wfn 5312  wf 5313  cfv 5317  (class class class)co 6000  cmpo 6002  1st c1st 6282  2nd c2nd 6283  supcsup 7145  infcinf 7146  *cxr 8176   < clt 8177  cle 8178  +crp 9845  topGenctg 13282  ∞Metcxmet 14494  ballcbl 14496  MetOpencmopn 14499  Topctop 14665  TopOnctopon 14678   ×t ctx 14920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-map 6795  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-xneg 9964  df-xadd 9965  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-topgen 13288  df-psmet 14501  df-xmet 14502  df-bl 14504  df-mopn 14505  df-top 14666  df-topon 14679  df-bases 14711  df-tx 14921
This theorem is referenced by:  txmetcnp  15186
  Copyright terms: Public domain W3C validator