ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2stropg GIF version

Theorem 2stropg 12738
Description: The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
Hypotheses
Ref Expression
2str.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}
2str.e 𝐸 = Slot 𝑁
2str.l 1 < 𝑁
2str.n 𝑁 ∈ ℕ
Assertion
Ref Expression
2stropg ((𝐵𝑉+𝑊) → + = (𝐸𝐺))

Proof of Theorem 2stropg
StepHypRef Expression
1 2str.e . . 3 𝐸 = Slot 𝑁
2 2str.n . . 3 𝑁 ∈ ℕ
31, 2ndxslid 12643 . 2 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
4 2str.g . . 3 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}
5 basendxnn 12674 . . . . . 6 (Base‘ndx) ∈ ℕ
65a1i 9 . . . . 5 ((𝐵𝑉+𝑊) → (Base‘ndx) ∈ ℕ)
7 simpl 109 . . . . 5 ((𝐵𝑉+𝑊) → 𝐵𝑉)
8 opexg 4257 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ 𝐵𝑉) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
96, 7, 8syl2anc 411 . . . 4 ((𝐵𝑉+𝑊) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
101, 2ndxarg 12641 . . . . . . 7 (𝐸‘ndx) = 𝑁
1110, 2eqeltri 2266 . . . . . 6 (𝐸‘ndx) ∈ ℕ
1211a1i 9 . . . . 5 ((𝐵𝑉+𝑊) → (𝐸‘ndx) ∈ ℕ)
13 simpr 110 . . . . 5 ((𝐵𝑉+𝑊) → +𝑊)
14 opexg 4257 . . . . 5 (((𝐸‘ndx) ∈ ℕ ∧ +𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ V)
1512, 13, 14syl2anc 411 . . . 4 ((𝐵𝑉+𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ V)
16 prexg 4240 . . . 4 ((⟨(Base‘ndx), 𝐵⟩ ∈ V ∧ ⟨(𝐸‘ndx), + ⟩ ∈ V) → {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩} ∈ V)
179, 15, 16syl2anc 411 . . 3 ((𝐵𝑉+𝑊) → {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩} ∈ V)
184, 17eqeltrid 2280 . 2 ((𝐵𝑉+𝑊) → 𝐺 ∈ V)
195nnrei 8991 . . . . . 6 (Base‘ndx) ∈ ℝ
20 2str.l . . . . . . 7 1 < 𝑁
21 basendx 12673 . . . . . . 7 (Base‘ndx) = 1
2220, 21, 103brtr4i 4059 . . . . . 6 (Base‘ndx) < (𝐸‘ndx)
2319, 22ltneii 8116 . . . . 5 (Base‘ndx) ≠ (𝐸‘ndx)
2423a1i 9 . . . 4 ((𝐵𝑉+𝑊) → (Base‘ndx) ≠ (𝐸‘ndx))
25 funprg 5304 . . . 4 ((((Base‘ndx) ∈ ℕ ∧ (𝐸‘ndx) ∈ ℕ) ∧ (𝐵𝑉+𝑊) ∧ (Base‘ndx) ≠ (𝐸‘ndx)) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
266, 12, 7, 13, 24, 25syl221anc 1260 . . 3 ((𝐵𝑉+𝑊) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
274funeqi 5275 . . 3 (Fun 𝐺 ↔ Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
2826, 27sylibr 134 . 2 ((𝐵𝑉+𝑊) → Fun 𝐺)
29 prid2g 3723 . . . 4 (⟨(𝐸‘ndx), + ⟩ ∈ V → ⟨(𝐸‘ndx), + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
3015, 29syl 14 . . 3 ((𝐵𝑉+𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
3130, 4eleqtrrdi 2287 . 2 ((𝐵𝑉+𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ 𝐺)
323, 18, 28, 31strslfvd 12660 1 ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wne 2364  Vcvv 2760  {cpr 3619  cop 3621   class class class wbr 4029  Fun wfun 5248  cfv 5254  1c1 7873   < clt 8054  cn 8982  ndxcnx 12615  Slot cslot 12617  Basecbs 12618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-pre-ltirr 7984
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fv 5262  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624
This theorem is referenced by:  grpplusgg  12745  eltpsg  14208
  Copyright terms: Public domain W3C validator