ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2stropg GIF version

Theorem 2stropg 11760
Description: The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
Hypotheses
Ref Expression
2str.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}
2str.e 𝐸 = Slot 𝑁
2str.l 1 < 𝑁
2str.n 𝑁 ∈ ℕ
Assertion
Ref Expression
2stropg ((𝐵𝑉+𝑊) → + = (𝐸𝐺))

Proof of Theorem 2stropg
StepHypRef Expression
1 2str.e . . 3 𝐸 = Slot 𝑁
2 2str.n . . 3 𝑁 ∈ ℕ
31, 2ndxslid 11683 . 2 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
4 2str.g . . 3 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}
5 basendxnn 11713 . . . . . 6 (Base‘ndx) ∈ ℕ
65a1i 9 . . . . 5 ((𝐵𝑉+𝑊) → (Base‘ndx) ∈ ℕ)
7 simpl 108 . . . . 5 ((𝐵𝑉+𝑊) → 𝐵𝑉)
8 opexg 4079 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ 𝐵𝑉) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
96, 7, 8syl2anc 404 . . . 4 ((𝐵𝑉+𝑊) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
101, 2ndxarg 11681 . . . . . . 7 (𝐸‘ndx) = 𝑁
1110, 2eqeltri 2167 . . . . . 6 (𝐸‘ndx) ∈ ℕ
1211a1i 9 . . . . 5 ((𝐵𝑉+𝑊) → (𝐸‘ndx) ∈ ℕ)
13 simpr 109 . . . . 5 ((𝐵𝑉+𝑊) → +𝑊)
14 opexg 4079 . . . . 5 (((𝐸‘ndx) ∈ ℕ ∧ +𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ V)
1512, 13, 14syl2anc 404 . . . 4 ((𝐵𝑉+𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ V)
16 prexg 4062 . . . 4 ((⟨(Base‘ndx), 𝐵⟩ ∈ V ∧ ⟨(𝐸‘ndx), + ⟩ ∈ V) → {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩} ∈ V)
179, 15, 16syl2anc 404 . . 3 ((𝐵𝑉+𝑊) → {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩} ∈ V)
184, 17syl5eqel 2181 . 2 ((𝐵𝑉+𝑊) → 𝐺 ∈ V)
195nnrei 8529 . . . . . 6 (Base‘ndx) ∈ ℝ
20 2str.l . . . . . . 7 1 < 𝑁
21 basendx 11712 . . . . . . 7 (Base‘ndx) = 1
2220, 21, 103brtr4i 3895 . . . . . 6 (Base‘ndx) < (𝐸‘ndx)
2319, 22ltneii 7678 . . . . 5 (Base‘ndx) ≠ (𝐸‘ndx)
2423a1i 9 . . . 4 ((𝐵𝑉+𝑊) → (Base‘ndx) ≠ (𝐸‘ndx))
25 funprg 5098 . . . 4 ((((Base‘ndx) ∈ ℕ ∧ (𝐸‘ndx) ∈ ℕ) ∧ (𝐵𝑉+𝑊) ∧ (Base‘ndx) ≠ (𝐸‘ndx)) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
266, 12, 7, 13, 24, 25syl221anc 1192 . . 3 ((𝐵𝑉+𝑊) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
274funeqi 5070 . . 3 (Fun 𝐺 ↔ Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
2826, 27sylibr 133 . 2 ((𝐵𝑉+𝑊) → Fun 𝐺)
29 prid2g 3567 . . . 4 (⟨(𝐸‘ndx), + ⟩ ∈ V → ⟨(𝐸‘ndx), + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
3015, 29syl 14 . . 3 ((𝐵𝑉+𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
3130, 4syl6eleqr 2188 . 2 ((𝐵𝑉+𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ 𝐺)
323, 18, 28, 31strslfvd 11699 1 ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1296  wcel 1445  wne 2262  Vcvv 2633  {cpr 3467  cop 3469   class class class wbr 3867  Fun wfun 5043  cfv 5049  1c1 7448   < clt 7619  cn 8520  ndxcnx 11655  Slot cslot 11657  Basecbs 11658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1re 7536  ax-addrcl 7539  ax-pre-ltirr 7554
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-iota 5014  df-fun 5051  df-fv 5057  df-pnf 7621  df-mnf 7622  df-ltxr 7624  df-inn 8521  df-ndx 11661  df-slot 11662  df-base 11664
This theorem is referenced by:  grpplusgg  11767  eltpsg  11905
  Copyright terms: Public domain W3C validator