ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2stropg GIF version

Theorem 2stropg 13149
Description: The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
Hypotheses
Ref Expression
2str.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}
2str.e 𝐸 = Slot 𝑁
2str.l 1 < 𝑁
2str.n 𝑁 ∈ ℕ
Assertion
Ref Expression
2stropg ((𝐵𝑉+𝑊) → + = (𝐸𝐺))

Proof of Theorem 2stropg
StepHypRef Expression
1 2str.e . . 3 𝐸 = Slot 𝑁
2 2str.n . . 3 𝑁 ∈ ℕ
31, 2ndxslid 13052 . 2 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
4 2str.g . . 3 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}
5 basendxnn 13083 . . . . . 6 (Base‘ndx) ∈ ℕ
65a1i 9 . . . . 5 ((𝐵𝑉+𝑊) → (Base‘ndx) ∈ ℕ)
7 simpl 109 . . . . 5 ((𝐵𝑉+𝑊) → 𝐵𝑉)
8 opexg 4313 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ 𝐵𝑉) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
96, 7, 8syl2anc 411 . . . 4 ((𝐵𝑉+𝑊) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
101, 2ndxarg 13050 . . . . . . 7 (𝐸‘ndx) = 𝑁
1110, 2eqeltri 2302 . . . . . 6 (𝐸‘ndx) ∈ ℕ
1211a1i 9 . . . . 5 ((𝐵𝑉+𝑊) → (𝐸‘ndx) ∈ ℕ)
13 simpr 110 . . . . 5 ((𝐵𝑉+𝑊) → +𝑊)
14 opexg 4313 . . . . 5 (((𝐸‘ndx) ∈ ℕ ∧ +𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ V)
1512, 13, 14syl2anc 411 . . . 4 ((𝐵𝑉+𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ V)
16 prexg 4294 . . . 4 ((⟨(Base‘ndx), 𝐵⟩ ∈ V ∧ ⟨(𝐸‘ndx), + ⟩ ∈ V) → {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩} ∈ V)
179, 15, 16syl2anc 411 . . 3 ((𝐵𝑉+𝑊) → {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩} ∈ V)
184, 17eqeltrid 2316 . 2 ((𝐵𝑉+𝑊) → 𝐺 ∈ V)
195nnrei 9115 . . . . . 6 (Base‘ndx) ∈ ℝ
20 2str.l . . . . . . 7 1 < 𝑁
21 basendx 13082 . . . . . . 7 (Base‘ndx) = 1
2220, 21, 103brtr4i 4112 . . . . . 6 (Base‘ndx) < (𝐸‘ndx)
2319, 22ltneii 8239 . . . . 5 (Base‘ndx) ≠ (𝐸‘ndx)
2423a1i 9 . . . 4 ((𝐵𝑉+𝑊) → (Base‘ndx) ≠ (𝐸‘ndx))
25 funprg 5370 . . . 4 ((((Base‘ndx) ∈ ℕ ∧ (𝐸‘ndx) ∈ ℕ) ∧ (𝐵𝑉+𝑊) ∧ (Base‘ndx) ≠ (𝐸‘ndx)) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
266, 12, 7, 13, 24, 25syl221anc 1282 . . 3 ((𝐵𝑉+𝑊) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
274funeqi 5338 . . 3 (Fun 𝐺 ↔ Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
2826, 27sylibr 134 . 2 ((𝐵𝑉+𝑊) → Fun 𝐺)
29 prid2g 3771 . . . 4 (⟨(𝐸‘ndx), + ⟩ ∈ V → ⟨(𝐸‘ndx), + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
3015, 29syl 14 . . 3 ((𝐵𝑉+𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
3130, 4eleqtrrdi 2323 . 2 ((𝐵𝑉+𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ 𝐺)
323, 18, 28, 31strslfvd 13069 1 ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wne 2400  Vcvv 2799  {cpr 3667  cop 3669   class class class wbr 4082  Fun wfun 5311  cfv 5317  1c1 7996   < clt 8177  cn 9106  ndxcnx 13024  Slot cslot 13026  Basecbs 13027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-pre-ltirr 8107
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fv 5325  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033
This theorem is referenced by:  grpplusgg  13156  eltpsg  14708
  Copyright terms: Public domain W3C validator