ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2stropg GIF version

Theorem 2stropg 13023
Description: The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
Hypotheses
Ref Expression
2str.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}
2str.e 𝐸 = Slot 𝑁
2str.l 1 < 𝑁
2str.n 𝑁 ∈ ℕ
Assertion
Ref Expression
2stropg ((𝐵𝑉+𝑊) → + = (𝐸𝐺))

Proof of Theorem 2stropg
StepHypRef Expression
1 2str.e . . 3 𝐸 = Slot 𝑁
2 2str.n . . 3 𝑁 ∈ ℕ
31, 2ndxslid 12927 . 2 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
4 2str.g . . 3 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}
5 basendxnn 12958 . . . . . 6 (Base‘ndx) ∈ ℕ
65a1i 9 . . . . 5 ((𝐵𝑉+𝑊) → (Base‘ndx) ∈ ℕ)
7 simpl 109 . . . . 5 ((𝐵𝑉+𝑊) → 𝐵𝑉)
8 opexg 4279 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ 𝐵𝑉) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
96, 7, 8syl2anc 411 . . . 4 ((𝐵𝑉+𝑊) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
101, 2ndxarg 12925 . . . . . . 7 (𝐸‘ndx) = 𝑁
1110, 2eqeltri 2279 . . . . . 6 (𝐸‘ndx) ∈ ℕ
1211a1i 9 . . . . 5 ((𝐵𝑉+𝑊) → (𝐸‘ndx) ∈ ℕ)
13 simpr 110 . . . . 5 ((𝐵𝑉+𝑊) → +𝑊)
14 opexg 4279 . . . . 5 (((𝐸‘ndx) ∈ ℕ ∧ +𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ V)
1512, 13, 14syl2anc 411 . . . 4 ((𝐵𝑉+𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ V)
16 prexg 4262 . . . 4 ((⟨(Base‘ndx), 𝐵⟩ ∈ V ∧ ⟨(𝐸‘ndx), + ⟩ ∈ V) → {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩} ∈ V)
179, 15, 16syl2anc 411 . . 3 ((𝐵𝑉+𝑊) → {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩} ∈ V)
184, 17eqeltrid 2293 . 2 ((𝐵𝑉+𝑊) → 𝐺 ∈ V)
195nnrei 9060 . . . . . 6 (Base‘ndx) ∈ ℝ
20 2str.l . . . . . . 7 1 < 𝑁
21 basendx 12957 . . . . . . 7 (Base‘ndx) = 1
2220, 21, 103brtr4i 4080 . . . . . 6 (Base‘ndx) < (𝐸‘ndx)
2319, 22ltneii 8184 . . . . 5 (Base‘ndx) ≠ (𝐸‘ndx)
2423a1i 9 . . . 4 ((𝐵𝑉+𝑊) → (Base‘ndx) ≠ (𝐸‘ndx))
25 funprg 5332 . . . 4 ((((Base‘ndx) ∈ ℕ ∧ (𝐸‘ndx) ∈ ℕ) ∧ (𝐵𝑉+𝑊) ∧ (Base‘ndx) ≠ (𝐸‘ndx)) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
266, 12, 7, 13, 24, 25syl221anc 1261 . . 3 ((𝐵𝑉+𝑊) → Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
274funeqi 5300 . . 3 (Fun 𝐺 ↔ Fun {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
2826, 27sylibr 134 . 2 ((𝐵𝑉+𝑊) → Fun 𝐺)
29 prid2g 3742 . . . 4 (⟨(𝐸‘ndx), + ⟩ ∈ V → ⟨(𝐸‘ndx), + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
3015, 29syl 14 . . 3 ((𝐵𝑉+𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩})
3130, 4eleqtrrdi 2300 . 2 ((𝐵𝑉+𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ 𝐺)
323, 18, 28, 31strslfvd 12944 1 ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wne 2377  Vcvv 2773  {cpr 3638  cop 3640   class class class wbr 4050  Fun wfun 5273  cfv 5279  1c1 7941   < clt 8122  cn 9051  ndxcnx 12899  Slot cslot 12901  Basecbs 12902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1re 8034  ax-addrcl 8037  ax-pre-ltirr 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-iota 5240  df-fun 5281  df-fv 5287  df-pnf 8124  df-mnf 8125  df-ltxr 8127  df-inn 9052  df-ndx 12905  df-slot 12906  df-base 12908
This theorem is referenced by:  grpplusgg  13030  eltpsg  14582
  Copyright terms: Public domain W3C validator