ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archsr GIF version

Theorem archsr 7866
Description: For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R is the embedding of the positive integer 𝑥 into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
Assertion
Ref Expression
archsr (𝐴R → ∃𝑥N 𝐴 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
Distinct variable group:   𝐴,𝑙,𝑢,𝑥

Proof of Theorem archsr
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7811 . 2 R = ((P × P) / ~R )
2 breq1 4037 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐴 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R𝐴 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
32rexbidv 2498 . 2 ([⟨𝑧, 𝑤⟩] ~R = 𝐴 → (∃𝑥N [⟨𝑧, 𝑤⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ↔ ∃𝑥N 𝐴 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
4 1pr 7638 . . . . . . 7 1PP
5 addclpr 7621 . . . . . . 7 ((𝑧P ∧ 1PP) → (𝑧 +P 1P) ∈ P)
64, 5mpan2 425 . . . . . 6 (𝑧P → (𝑧 +P 1P) ∈ P)
7 archpr 7727 . . . . . 6 ((𝑧 +P 1P) ∈ P → ∃𝑥N (𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
86, 7syl 14 . . . . 5 (𝑧P → ∃𝑥N (𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
98adantr 276 . . . 4 ((𝑧P𝑤P) → ∃𝑥N (𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
10 nnprlu 7637 . . . . . . . . . 10 (𝑥N → ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
1110adantl 277 . . . . . . . . 9 (((𝑧P𝑤P) ∧ 𝑥N) → ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
12 addclpr 7621 . . . . . . . . 9 ((⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P ∧ 1PP) → (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
1311, 4, 12sylancl 413 . . . . . . . 8 (((𝑧P𝑤P) ∧ 𝑥N) → (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
14 simplr 528 . . . . . . . 8 (((𝑧P𝑤P) ∧ 𝑥N) → 𝑤P)
15 ltaddpr 7681 . . . . . . . 8 (((⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P𝑤P) → (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)<P ((⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 𝑤))
1613, 14, 15syl2anc 411 . . . . . . 7 (((𝑧P𝑤P) ∧ 𝑥N) → (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)<P ((⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 𝑤))
17 addcomprg 7662 . . . . . . . 8 ((𝑤P ∧ (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P) → (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)) = ((⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 𝑤))
1814, 13, 17syl2anc 411 . . . . . . 7 (((𝑧P𝑤P) ∧ 𝑥N) → (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)) = ((⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 𝑤))
1916, 18breqtrrd 4062 . . . . . 6 (((𝑧P𝑤P) ∧ 𝑥N) → (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)))
20 ltaddpr 7681 . . . . . . . 8 ((⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P ∧ 1PP) → ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
2111, 4, 20sylancl 413 . . . . . . 7 (((𝑧P𝑤P) ∧ 𝑥N) → ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
22 ltsopr 7680 . . . . . . . . 9 <P Or P
23 ltrelpr 7589 . . . . . . . . 9 <P ⊆ (P × P)
2422, 23sotri 5066 . . . . . . . 8 (((𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ∧ ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)) → (𝑧 +P 1P)<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
2524expcom 116 . . . . . . 7 (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) → ((𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ → (𝑧 +P 1P)<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)))
2621, 25syl 14 . . . . . 6 (((𝑧P𝑤P) ∧ 𝑥N) → ((𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ → (𝑧 +P 1P)<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)))
2722, 23sotri 5066 . . . . . . 7 (((𝑧 +P 1P)<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∧ (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))) → (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)))
2827expcom 116 . . . . . 6 ((⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)) → ((𝑧 +P 1P)<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) → (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))))
2919, 26, 28sylsyld 58 . . . . 5 (((𝑧P𝑤P) ∧ 𝑥N) → ((𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ → (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))))
3029reximdva 2599 . . . 4 ((𝑧P𝑤P) → (∃𝑥N (𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ → ∃𝑥N (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))))
319, 30mpd 13 . . 3 ((𝑧P𝑤P) → ∃𝑥N (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)))
32 simpl 109 . . . . 5 (((𝑧P𝑤P) ∧ 𝑥N) → (𝑧P𝑤P))
334a1i 9 . . . . 5 (((𝑧P𝑤P) ∧ 𝑥N) → 1PP)
34 ltsrprg 7831 . . . . 5 (((𝑧P𝑤P) ∧ ((⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ↔ (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))))
3532, 13, 33, 34syl12anc 1247 . . . 4 (((𝑧P𝑤P) ∧ 𝑥N) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ↔ (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))))
3635rexbidva 2494 . . 3 ((𝑧P𝑤P) → (∃𝑥N [⟨𝑧, 𝑤⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ↔ ∃𝑥N (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))))
3731, 36mpbird 167 . 2 ((𝑧P𝑤P) → ∃𝑥N [⟨𝑧, 𝑤⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
381, 3, 37ecoptocl 6690 1 (𝐴R → ∃𝑥N 𝐴 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wrex 2476  cop 3626   class class class wbr 4034  (class class class)co 5925  1oc1o 6476  [cec 6599  Ncnpi 7356   ~Q ceq 7363   <Q cltq 7369  Pcnp 7375  1Pc1p 7376   +P cpp 7377  <P cltp 7379   ~R cer 7380  Rcnr 7381   <R cltr 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-iltp 7554  df-enr 7810  df-nr 7811  df-ltr 7814
This theorem is referenced by:  axarch  7975
  Copyright terms: Public domain W3C validator