Step | Hyp | Ref
| Expression |
1 | | df-nr 7689 |
. 2
⊢
R = ((P × P) /
~R ) |
2 | | breq1 3992 |
. . 3
⊢
([〈𝑧, 𝑤〉]
~R = 𝐴 → ([〈𝑧, 𝑤〉] ~R
<R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ↔ 𝐴 <R
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R )) |
3 | 2 | rexbidv 2471 |
. 2
⊢
([〈𝑧, 𝑤〉]
~R = 𝐴 → (∃𝑥 ∈ N [〈𝑧, 𝑤〉] ~R
<R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ↔ ∃𝑥 ∈ N 𝐴 <R
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R )) |
4 | | 1pr 7516 |
. . . . . . 7
⊢
1P ∈ P |
5 | | addclpr 7499 |
. . . . . . 7
⊢ ((𝑧 ∈ P ∧
1P ∈ P) → (𝑧 +P
1P) ∈ P) |
6 | 4, 5 | mpan2 423 |
. . . . . 6
⊢ (𝑧 ∈ P →
(𝑧
+P 1P) ∈
P) |
7 | | archpr 7605 |
. . . . . 6
⊢ ((𝑧 +P
1P) ∈ P → ∃𝑥 ∈ N (𝑧 +P
1P)<P 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉) |
8 | 6, 7 | syl 14 |
. . . . 5
⊢ (𝑧 ∈ P →
∃𝑥 ∈
N (𝑧
+P
1P)<P 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉) |
9 | 8 | adantr 274 |
. . . 4
⊢ ((𝑧 ∈ P ∧
𝑤 ∈ P)
→ ∃𝑥 ∈
N (𝑧
+P
1P)<P 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉) |
10 | | nnprlu 7515 |
. . . . . . . . . 10
⊢ (𝑥 ∈ N →
〈{𝑙 ∣ 𝑙 <Q
[〈𝑥,
1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 ∈
P) |
11 | 10 | adantl 275 |
. . . . . . . . 9
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ 𝑥 ∈
N) → 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 ∈
P) |
12 | | addclpr 7499 |
. . . . . . . . 9
⊢
((〈{𝑙 ∣
𝑙
<Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 ∈ P ∧
1P ∈ P) → (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∈ P) |
13 | 11, 4, 12 | sylancl 411 |
. . . . . . . 8
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ 𝑥 ∈
N) → (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∈ P) |
14 | | simplr 525 |
. . . . . . . 8
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ 𝑥 ∈
N) → 𝑤
∈ P) |
15 | | ltaddpr 7559 |
. . . . . . . 8
⊢
(((〈{𝑙 ∣
𝑙
<Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∈ P ∧ 𝑤 ∈ P) → (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)<P ((〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P) +P 𝑤)) |
16 | 13, 14, 15 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ 𝑥 ∈
N) → (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)<P ((〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P) +P 𝑤)) |
17 | | addcomprg 7540 |
. . . . . . . 8
⊢ ((𝑤 ∈ P ∧
(〈{𝑙 ∣ 𝑙 <Q
[〈𝑥,
1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∈ P) → (𝑤 +P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)) = ((〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P) +P 𝑤)) |
18 | 14, 13, 17 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ 𝑥 ∈
N) → (𝑤
+P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)) = ((〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P) +P 𝑤)) |
19 | 16, 18 | breqtrrd 4017 |
. . . . . 6
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ 𝑥 ∈
N) → (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)<P (𝑤 +P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P))) |
20 | | ltaddpr 7559 |
. . . . . . . 8
⊢
((〈{𝑙 ∣
𝑙
<Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 ∈ P ∧
1P ∈ P) → 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉<P
(〈{𝑙 ∣ 𝑙 <Q
[〈𝑥,
1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)) |
21 | 11, 4, 20 | sylancl 411 |
. . . . . . 7
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ 𝑥 ∈
N) → 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉<P
(〈{𝑙 ∣ 𝑙 <Q
[〈𝑥,
1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)) |
22 | | ltsopr 7558 |
. . . . . . . . 9
⊢
<P Or P |
23 | | ltrelpr 7467 |
. . . . . . . . 9
⊢
<P ⊆ (P ×
P) |
24 | 22, 23 | sotri 5006 |
. . . . . . . 8
⊢ (((𝑧 +P
1P)<P 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 ∧ 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉<P
(〈{𝑙 ∣ 𝑙 <Q
[〈𝑥,
1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)) → (𝑧 +P
1P)<P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)) |
25 | 24 | expcom 115 |
. . . . . . 7
⊢
(〈{𝑙 ∣
𝑙
<Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉<P
(〈{𝑙 ∣ 𝑙 <Q
[〈𝑥,
1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P) → ((𝑧 +P
1P)<P 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 → (𝑧 +P
1P)<P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P))) |
26 | 21, 25 | syl 14 |
. . . . . 6
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ 𝑥 ∈
N) → ((𝑧
+P
1P)<P 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 → (𝑧 +P
1P)<P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P))) |
27 | 22, 23 | sotri 5006 |
. . . . . . 7
⊢ (((𝑧 +P
1P)<P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∧ (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)<P (𝑤 +P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P))) → (𝑧 +P
1P)<P (𝑤 +P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P))) |
28 | 27 | expcom 115 |
. . . . . 6
⊢
((〈{𝑙 ∣
𝑙
<Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)<P (𝑤 +P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)) → ((𝑧 +P
1P)<P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P) → (𝑧 +P
1P)<P (𝑤 +P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)))) |
29 | 19, 26, 28 | sylsyld 58 |
. . . . 5
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ 𝑥 ∈
N) → ((𝑧
+P
1P)<P 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 → (𝑧 +P
1P)<P (𝑤 +P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)))) |
30 | 29 | reximdva 2572 |
. . . 4
⊢ ((𝑧 ∈ P ∧
𝑤 ∈ P)
→ (∃𝑥 ∈
N (𝑧
+P
1P)<P 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 → ∃𝑥 ∈ N (𝑧 +P
1P)<P (𝑤 +P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)))) |
31 | 9, 30 | mpd 13 |
. . 3
⊢ ((𝑧 ∈ P ∧
𝑤 ∈ P)
→ ∃𝑥 ∈
N (𝑧
+P
1P)<P (𝑤 +P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P))) |
32 | | simpl 108 |
. . . . 5
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ 𝑥 ∈
N) → (𝑧
∈ P ∧ 𝑤 ∈ P)) |
33 | 4 | a1i 9 |
. . . . 5
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ 𝑥 ∈
N) → 1P ∈
P) |
34 | | ltsrprg 7709 |
. . . . 5
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ ((〈{𝑙 ∣
𝑙
<Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P) ∈ P ∧
1P ∈ P)) → ([〈𝑧, 𝑤〉] ~R
<R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ↔ (𝑧 +P
1P)<P (𝑤 +P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)))) |
35 | 32, 13, 33, 34 | syl12anc 1231 |
. . . 4
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ 𝑥 ∈
N) → ([〈𝑧, 𝑤〉] ~R
<R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ↔ (𝑧 +P
1P)<P (𝑤 +P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)))) |
36 | 35 | rexbidva 2467 |
. . 3
⊢ ((𝑧 ∈ P ∧
𝑤 ∈ P)
→ (∃𝑥 ∈
N [〈𝑧,
𝑤〉]
~R <R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ↔ ∃𝑥 ∈ N (𝑧 +P
1P)<P (𝑤 +P (〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P)))) |
37 | 31, 36 | mpbird 166 |
. 2
⊢ ((𝑧 ∈ P ∧
𝑤 ∈ P)
→ ∃𝑥 ∈
N [〈𝑧,
𝑤〉]
~R <R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ) |
38 | 1, 3, 37 | ecoptocl 6600 |
1
⊢ (𝐴 ∈ R →
∃𝑥 ∈
N 𝐴
<R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ) |