ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz0ubfz0 GIF version

Theorem elfz0ubfz0 9789
Description: An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
Assertion
Ref Expression
elfz0ubfz0 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿))

Proof of Theorem elfz0ubfz0
StepHypRef Expression
1 elfz2nn0 9779 . . . 4 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
2 elfz2 9684 . . . . . 6 (𝐿 ∈ (𝐾...𝑁) ↔ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)))
3 simpr1 968 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → 𝐾 ∈ ℕ0)
4 elnn0z 8965 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
5 simpr 109 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℤ)
6 0z 8963 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℤ
7 zletr 9001 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 0 ≤ 𝐿))
86, 7mp3an1 1283 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 0 ≤ 𝐿))
9 elnn0z 8965 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0 ↔ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿))
109simplbi2 380 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℤ → (0 ≤ 𝐿𝐿 ∈ ℕ0))
115, 8, 10sylsyld 58 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 𝐿 ∈ ℕ0))
1211expd 256 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐾 → (𝐾𝐿𝐿 ∈ ℕ0)))
1312impancom 258 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → (𝐿 ∈ ℤ → (𝐾𝐿𝐿 ∈ ℕ0)))
144, 13sylbi 120 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ0 → (𝐿 ∈ ℤ → (𝐾𝐿𝐿 ∈ ℕ0)))
1514com13 80 . . . . . . . . . . . . . . 15 (𝐾𝐿 → (𝐿 ∈ ℤ → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
1615adantr 272 . . . . . . . . . . . . . 14 ((𝐾𝐿𝐿𝑁) → (𝐿 ∈ ℤ → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
1716com12 30 . . . . . . . . . . . . 13 (𝐿 ∈ ℤ → ((𝐾𝐿𝐿𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
18173ad2ant3 985 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾𝐿𝐿𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
1918imp 123 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0))
2019com12 30 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → 𝐿 ∈ ℕ0))
21203ad2ant1 983 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → 𝐿 ∈ ℕ0))
2221impcom 124 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → 𝐿 ∈ ℕ0)
23 simplrl 507 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → 𝐾𝐿)
243, 22, 233jca 1142 . . . . . . 7 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿))
2524ex 114 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
262, 25sylbi 120 . . . . 5 (𝐿 ∈ (𝐾...𝑁) → ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
2726com12 30 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝐿 ∈ (𝐾...𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
281, 27sylbi 120 . . 3 (𝐾 ∈ (0...𝑁) → (𝐿 ∈ (𝐾...𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
2928imp 123 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿))
30 elfz2nn0 9779 . 2 (𝐾 ∈ (0...𝐿) ↔ (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿))
3129, 30sylibr 133 1 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 943  wcel 1461   class class class wbr 3893  (class class class)co 5726  0cc0 7541  cle 7719  0cn0 8875  cz 8952  ...cfz 9677
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-addcom 7639  ax-addass 7641  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-0id 7647  ax-rnegex 7648  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-ltadd 7655
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-inn 8625  df-n0 8876  df-z 8953  df-uz 9223  df-fz 9678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator