ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz0ubfz0 GIF version

Theorem elfz0ubfz0 10246
Description: An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
Assertion
Ref Expression
elfz0ubfz0 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿))

Proof of Theorem elfz0ubfz0
StepHypRef Expression
1 elfz2nn0 10233 . . . 4 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
2 elfz2 10136 . . . . . 6 (𝐿 ∈ (𝐾...𝑁) ↔ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)))
3 simpr1 1005 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → 𝐾 ∈ ℕ0)
4 elnn0z 9384 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
5 simpr 110 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℤ)
6 0z 9382 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℤ
7 zletr 9421 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 0 ≤ 𝐿))
86, 7mp3an1 1336 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 0 ≤ 𝐿))
9 elnn0z 9384 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0 ↔ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿))
109simplbi2 385 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℤ → (0 ≤ 𝐿𝐿 ∈ ℕ0))
115, 8, 10sylsyld 58 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 𝐿 ∈ ℕ0))
1211expd 258 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐾 → (𝐾𝐿𝐿 ∈ ℕ0)))
1312impancom 260 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → (𝐿 ∈ ℤ → (𝐾𝐿𝐿 ∈ ℕ0)))
144, 13sylbi 121 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ0 → (𝐿 ∈ ℤ → (𝐾𝐿𝐿 ∈ ℕ0)))
1514com13 80 . . . . . . . . . . . . . . 15 (𝐾𝐿 → (𝐿 ∈ ℤ → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
1615adantr 276 . . . . . . . . . . . . . 14 ((𝐾𝐿𝐿𝑁) → (𝐿 ∈ ℤ → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
1716com12 30 . . . . . . . . . . . . 13 (𝐿 ∈ ℤ → ((𝐾𝐿𝐿𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
18173ad2ant3 1022 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾𝐿𝐿𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
1918imp 124 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0))
2019com12 30 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → 𝐿 ∈ ℕ0))
21203ad2ant1 1020 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → 𝐿 ∈ ℕ0))
2221impcom 125 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → 𝐿 ∈ ℕ0)
23 simplrl 535 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → 𝐾𝐿)
243, 22, 233jca 1179 . . . . . . 7 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿))
2524ex 115 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
262, 25sylbi 121 . . . . 5 (𝐿 ∈ (𝐾...𝑁) → ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
2726com12 30 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝐿 ∈ (𝐾...𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
281, 27sylbi 121 . . 3 (𝐾 ∈ (0...𝑁) → (𝐿 ∈ (𝐾...𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
2928imp 124 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿))
30 elfz2nn0 10233 . 2 (𝐾 ∈ (0...𝐿) ↔ (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿))
3129, 30sylibr 134 1 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2175   class class class wbr 4043  (class class class)co 5943  0cc0 7924  cle 8107  0cn0 9294  cz 9371  ...cfz 10129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator