ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trintssm GIF version

Theorem trintssm 4143
Description: Any inhabited transitive class includes its intersection. Similar to Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the inhabitedness hypothesis). (Contributed by Jim Kingdon, 22-Aug-2018.)
Assertion
Ref Expression
trintssm ((Tr 𝐴 ∧ ∃𝑥 𝑥𝐴) → 𝐴𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem trintssm
StepHypRef Expression
1 intss1 3885 . . . 4 (𝑥𝐴 𝐴𝑥)
2 trss 4136 . . . . 5 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
32com12 30 . . . 4 (𝑥𝐴 → (Tr 𝐴𝑥𝐴))
4 sstr2 3186 . . . 4 ( 𝐴𝑥 → (𝑥𝐴 𝐴𝐴))
51, 3, 4sylsyld 58 . . 3 (𝑥𝐴 → (Tr 𝐴 𝐴𝐴))
65exlimiv 1609 . 2 (∃𝑥 𝑥𝐴 → (Tr 𝐴 𝐴𝐴))
76impcom 125 1 ((Tr 𝐴 ∧ ∃𝑥 𝑥𝐴) → 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1503  wcel 2164  wss 3153   cint 3870  Tr wtr 4127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836  df-int 3871  df-tr 4128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator