Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > trintssm | GIF version |
Description: Any inhabited transitive class includes its intersection. Similar to Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the inhabitedness hypothesis). (Contributed by Jim Kingdon, 22-Aug-2018.) |
Ref | Expression |
---|---|
trintssm | ⊢ ((Tr 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∩ 𝐴 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intss1 3839 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
2 | trss 4089 | . . . . 5 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
3 | 2 | com12 30 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (Tr 𝐴 → 𝑥 ⊆ 𝐴)) |
4 | sstr2 3149 | . . . 4 ⊢ (∩ 𝐴 ⊆ 𝑥 → (𝑥 ⊆ 𝐴 → ∩ 𝐴 ⊆ 𝐴)) | |
5 | 1, 3, 4 | sylsyld 58 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (Tr 𝐴 → ∩ 𝐴 ⊆ 𝐴)) |
6 | 5 | exlimiv 1586 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (Tr 𝐴 → ∩ 𝐴 ⊆ 𝐴)) |
7 | 6 | impcom 124 | 1 ⊢ ((Tr 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∩ 𝐴 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1480 ∈ wcel 2136 ⊆ wss 3116 ∩ cint 3824 Tr wtr 4080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 df-int 3825 df-tr 4081 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |