| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trintssm | GIF version | ||
| Description: Any inhabited transitive class includes its intersection. Similar to Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the inhabitedness hypothesis). (Contributed by Jim Kingdon, 22-Aug-2018.) |
| Ref | Expression |
|---|---|
| trintssm | ⊢ ((Tr 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∩ 𝐴 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intss1 3899 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
| 2 | trss 4150 | . . . . 5 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
| 3 | 2 | com12 30 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (Tr 𝐴 → 𝑥 ⊆ 𝐴)) |
| 4 | sstr2 3199 | . . . 4 ⊢ (∩ 𝐴 ⊆ 𝑥 → (𝑥 ⊆ 𝐴 → ∩ 𝐴 ⊆ 𝐴)) | |
| 5 | 1, 3, 4 | sylsyld 58 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (Tr 𝐴 → ∩ 𝐴 ⊆ 𝐴)) |
| 6 | 5 | exlimiv 1620 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (Tr 𝐴 → ∩ 𝐴 ⊆ 𝐴)) |
| 7 | 6 | impcom 125 | 1 ⊢ ((Tr 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∩ 𝐴 ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1514 ∈ wcel 2175 ⊆ wss 3165 ∩ cint 3884 Tr wtr 4141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-in 3171 df-ss 3178 df-uni 3850 df-int 3885 df-tr 4142 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |