ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trintssm GIF version

Theorem trintssm 4103
Description: Any inhabited transitive class includes its intersection. Similar to Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the inhabitedness hypothesis). (Contributed by Jim Kingdon, 22-Aug-2018.)
Assertion
Ref Expression
trintssm ((Tr 𝐴 ∧ ∃𝑥 𝑥𝐴) → 𝐴𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem trintssm
StepHypRef Expression
1 intss1 3846 . . . 4 (𝑥𝐴 𝐴𝑥)
2 trss 4096 . . . . 5 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
32com12 30 . . . 4 (𝑥𝐴 → (Tr 𝐴𝑥𝐴))
4 sstr2 3154 . . . 4 ( 𝐴𝑥 → (𝑥𝐴 𝐴𝐴))
51, 3, 4sylsyld 58 . . 3 (𝑥𝐴 → (Tr 𝐴 𝐴𝐴))
65exlimiv 1591 . 2 (∃𝑥 𝑥𝐴 → (Tr 𝐴 𝐴𝐴))
76impcom 124 1 ((Tr 𝐴 ∧ ∃𝑥 𝑥𝐴) → 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1485  wcel 2141  wss 3121   cint 3831  Tr wtr 4087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-int 3832  df-tr 4088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator