ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trintssm GIF version

Theorem trintssm 4198
Description: Any inhabited transitive class includes its intersection. Similar to Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the inhabitedness hypothesis). (Contributed by Jim Kingdon, 22-Aug-2018.)
Assertion
Ref Expression
trintssm ((Tr 𝐴 ∧ ∃𝑥 𝑥𝐴) → 𝐴𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem trintssm
StepHypRef Expression
1 intss1 3938 . . . 4 (𝑥𝐴 𝐴𝑥)
2 trss 4191 . . . . 5 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
32com12 30 . . . 4 (𝑥𝐴 → (Tr 𝐴𝑥𝐴))
4 sstr2 3231 . . . 4 ( 𝐴𝑥 → (𝑥𝐴 𝐴𝐴))
51, 3, 4sylsyld 58 . . 3 (𝑥𝐴 → (Tr 𝐴 𝐴𝐴))
65exlimiv 1644 . 2 (∃𝑥 𝑥𝐴 → (Tr 𝐴 𝐴𝐴))
76impcom 125 1 ((Tr 𝐴 ∧ ∃𝑥 𝑥𝐴) → 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1538  wcel 2200  wss 3197   cint 3923  Tr wtr 4182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-uni 3889  df-int 3924  df-tr 4183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator