ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trintssm GIF version

Theorem trintssm 4117
Description: Any inhabited transitive class includes its intersection. Similar to Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the inhabitedness hypothesis). (Contributed by Jim Kingdon, 22-Aug-2018.)
Assertion
Ref Expression
trintssm ((Tr 𝐴 ∧ ∃𝑥 𝑥𝐴) → 𝐴𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem trintssm
StepHypRef Expression
1 intss1 3859 . . . 4 (𝑥𝐴 𝐴𝑥)
2 trss 4110 . . . . 5 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
32com12 30 . . . 4 (𝑥𝐴 → (Tr 𝐴𝑥𝐴))
4 sstr2 3162 . . . 4 ( 𝐴𝑥 → (𝑥𝐴 𝐴𝐴))
51, 3, 4sylsyld 58 . . 3 (𝑥𝐴 → (Tr 𝐴 𝐴𝐴))
65exlimiv 1598 . 2 (∃𝑥 𝑥𝐴 → (Tr 𝐴 𝐴𝐴))
76impcom 125 1 ((Tr 𝐴 ∧ ∃𝑥 𝑥𝐴) → 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1492  wcel 2148  wss 3129   cint 3844  Tr wtr 4101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2739  df-in 3135  df-ss 3142  df-uni 3810  df-int 3845  df-tr 4102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator