![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > trintssm | GIF version |
Description: Any inhabited transitive class includes its intersection. Similar to Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the inhabitedness hypothesis). (Contributed by Jim Kingdon, 22-Aug-2018.) |
Ref | Expression |
---|---|
trintssm | ⊢ ((Tr 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∩ 𝐴 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intss1 3859 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
2 | trss 4110 | . . . . 5 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
3 | 2 | com12 30 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (Tr 𝐴 → 𝑥 ⊆ 𝐴)) |
4 | sstr2 3162 | . . . 4 ⊢ (∩ 𝐴 ⊆ 𝑥 → (𝑥 ⊆ 𝐴 → ∩ 𝐴 ⊆ 𝐴)) | |
5 | 1, 3, 4 | sylsyld 58 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (Tr 𝐴 → ∩ 𝐴 ⊆ 𝐴)) |
6 | 5 | exlimiv 1598 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (Tr 𝐴 → ∩ 𝐴 ⊆ 𝐴)) |
7 | 6 | impcom 125 | 1 ⊢ ((Tr 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∩ 𝐴 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1492 ∈ wcel 2148 ⊆ wss 3129 ∩ cint 3844 Tr wtr 4101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2739 df-in 3135 df-ss 3142 df-uni 3810 df-int 3845 df-tr 4102 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |