Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smoiun | GIF version |
Description: The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.) |
Ref | Expression |
---|---|
smoiun | ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ⊆ (𝐵‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 3870 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵‘𝑥)) | |
2 | smofvon 6267 | . . . . 5 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐵‘𝐴) ∈ On) | |
3 | smoel 6268 | . . . . . 6 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐵‘𝑥) ∈ (𝐵‘𝐴)) | |
4 | 3 | 3expia 1195 | . . . . 5 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝑥 ∈ 𝐴 → (𝐵‘𝑥) ∈ (𝐵‘𝐴))) |
5 | ontr1 4367 | . . . . . 6 ⊢ ((𝐵‘𝐴) ∈ On → ((𝑦 ∈ (𝐵‘𝑥) ∧ (𝐵‘𝑥) ∈ (𝐵‘𝐴)) → 𝑦 ∈ (𝐵‘𝐴))) | |
6 | 5 | expcomd 1429 | . . . . 5 ⊢ ((𝐵‘𝐴) ∈ On → ((𝐵‘𝑥) ∈ (𝐵‘𝐴) → (𝑦 ∈ (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴)))) |
7 | 2, 4, 6 | sylsyld 58 | . . . 4 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝑥 ∈ 𝐴 → (𝑦 ∈ (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴)))) |
8 | 7 | rexlimdv 2582 | . . 3 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴))) |
9 | 1, 8 | syl5bi 151 | . 2 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) → 𝑦 ∈ (𝐵‘𝐴))) |
10 | 9 | ssrdv 3148 | 1 ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ⊆ (𝐵‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ∃wrex 2445 ⊆ wss 3116 ∪ ciun 3866 Oncon0 4341 dom cdm 4604 ‘cfv 5188 Smo wsmo 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-smo 6254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |