ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoiun GIF version

Theorem smoiun 6359
Description: The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.)
Assertion
Ref Expression
smoiun ((Smo 𝐵𝐴 ∈ dom 𝐵) → 𝑥𝐴 (𝐵𝑥) ⊆ (𝐵𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem smoiun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 3920 . . 3 (𝑦 𝑥𝐴 (𝐵𝑥) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝑥))
2 smofvon 6357 . . . . 5 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝐵𝐴) ∈ On)
3 smoel 6358 . . . . . 6 ((Smo 𝐵𝐴 ∈ dom 𝐵𝑥𝐴) → (𝐵𝑥) ∈ (𝐵𝐴))
433expia 1207 . . . . 5 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝑥𝐴 → (𝐵𝑥) ∈ (𝐵𝐴)))
5 ontr1 4424 . . . . . 6 ((𝐵𝐴) ∈ On → ((𝑦 ∈ (𝐵𝑥) ∧ (𝐵𝑥) ∈ (𝐵𝐴)) → 𝑦 ∈ (𝐵𝐴)))
65expcomd 1452 . . . . 5 ((𝐵𝐴) ∈ On → ((𝐵𝑥) ∈ (𝐵𝐴) → (𝑦 ∈ (𝐵𝑥) → 𝑦 ∈ (𝐵𝐴))))
72, 4, 6sylsyld 58 . . . 4 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝑥𝐴 → (𝑦 ∈ (𝐵𝑥) → 𝑦 ∈ (𝐵𝐴))))
87rexlimdv 2613 . . 3 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (∃𝑥𝐴 𝑦 ∈ (𝐵𝑥) → 𝑦 ∈ (𝐵𝐴)))
91, 8biimtrid 152 . 2 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝑦 𝑥𝐴 (𝐵𝑥) → 𝑦 ∈ (𝐵𝐴)))
109ssrdv 3189 1 ((Smo 𝐵𝐴 ∈ dom 𝐵) → 𝑥𝐴 (𝐵𝑥) ⊆ (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wrex 2476  wss 3157   ciun 3916  Oncon0 4398  dom cdm 4663  cfv 5258  Smo wsmo 6343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-smo 6344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator