ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssv GIF version

Theorem ssv 3219
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.)
Assertion
Ref Expression
ssv 𝐴 ⊆ V

Proof of Theorem ssv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 2785 . 2 (𝑥𝐴𝑥 ∈ V)
21ssriv 3201 1 𝐴 ⊆ V
Colors of variables: wff set class
Syntax hints:  Vcvv 2773  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-v 2775  df-in 3176  df-ss 3183
This theorem is referenced by:  ddifss  3415  inv1  3501  unv  3502  vss  3512  disj2  3520  pwv  3854  trv  4161  xpss  4790  djussxp  4830  dmv  4902  dmresi  5022  resid  5024  ssrnres  5133  rescnvcnv  5153  cocnvcnv1  5201  relrelss  5217  dffn2  5436  oprabss  6043  ofmres  6233  f1stres  6257  f2ndres  6258  fiintim  7042  residfi  7056  djuf1olemr  7170  endjusym  7212  dju1p1e2  7320  suplocexprlemell  7841  seq3val  10622  seqvalcd  10623  seq3-1  10624  seqf  10626  seq3p1  10627  seqf2  10630  seq1cd  10631  seqp1cd  10632  seqclg  10634  seqfeq4g  10693  wrdv  11027  setscom  12942  gsumwsubmcl  13398  gsumfzcl  13401  prdsinvlem  13510  rngmgpf  13769  mgpf  13843  crngridl  14362  upxp  14814  uptx  14816  cnmptid  14823  cnmpt1st  14830  cnmpt2nd  14831
  Copyright terms: Public domain W3C validator