ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssv GIF version

Theorem ssv 3246
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.)
Assertion
Ref Expression
ssv 𝐴 ⊆ V

Proof of Theorem ssv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 2811 . 2 (𝑥𝐴𝑥 ∈ V)
21ssriv 3228 1 𝐴 ⊆ V
Colors of variables: wff set class
Syntax hints:  Vcvv 2799  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801  df-in 3203  df-ss 3210
This theorem is referenced by:  ddifss  3442  inv1  3528  unv  3529  vss  3539  disj2  3547  pwv  3886  trv  4193  xpss  4826  djussxp  4866  dmv  4938  dmresi  5059  resid  5061  ssrnres  5170  rescnvcnv  5190  cocnvcnv1  5238  relrelss  5254  dffn2  5474  oprabss  6089  ofmres  6279  f1stres  6303  f2ndres  6304  fiintim  7089  residfi  7103  djuf1olemr  7217  endjusym  7259  dju1p1e2  7371  suplocexprlemell  7896  seq3val  10677  seqvalcd  10678  seq3-1  10679  seqf  10681  seq3p1  10682  seqf2  10685  seq1cd  10686  seqp1cd  10687  seqclg  10689  seqfeq4g  10748  wrdv  11082  setscom  13067  gsumwsubmcl  13524  gsumfzcl  13527  prdsinvlem  13636  rngmgpf  13895  mgpf  13969  crngridl  14488  upxp  14940  uptx  14942  cnmptid  14949  cnmpt1st  14956  cnmpt2nd  14957
  Copyright terms: Public domain W3C validator