ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssv GIF version

Theorem ssv 3178
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.)
Assertion
Ref Expression
ssv 𝐴 ⊆ V

Proof of Theorem ssv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 2749 . 2 (𝑥𝐴𝑥 ∈ V)
21ssriv 3160 1 𝐴 ⊆ V
Colors of variables: wff set class
Syntax hints:  Vcvv 2738  wss 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2740  df-in 3136  df-ss 3143
This theorem is referenced by:  ddifss  3374  inv1  3460  unv  3461  vss  3471  disj2  3479  pwv  3809  trv  4114  xpss  4735  djussxp  4773  dmv  4844  dmresi  4963  resid  4965  ssrnres  5072  rescnvcnv  5092  cocnvcnv1  5140  relrelss  5156  dffn2  5368  oprabss  5961  ofmres  6137  f1stres  6160  f2ndres  6161  fiintim  6928  djuf1olemr  7053  endjusym  7095  dju1p1e2  7196  suplocexprlemell  7712  seq3val  10458  seqvalcd  10459  seq3-1  10460  seqf  10461  seq3p1  10462  seqf2  10464  seq1cd  10465  seqp1cd  10466  setscom  12502  mgpf  13194  upxp  13775  uptx  13777  cnmptid  13784  cnmpt1st  13791  cnmpt2nd  13792
  Copyright terms: Public domain W3C validator