| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssv | GIF version | ||
| Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| ssv | ⊢ 𝐴 ⊆ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
| 2 | 1 | ssriv 3188 | 1 ⊢ 𝐴 ⊆ V |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2763 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ddifss 3402 inv1 3488 unv 3489 vss 3499 disj2 3507 pwv 3839 trv 4144 xpss 4772 djussxp 4812 dmv 4883 dmresi 5002 resid 5004 ssrnres 5113 rescnvcnv 5133 cocnvcnv1 5181 relrelss 5197 dffn2 5412 oprabss 6012 ofmres 6202 f1stres 6226 f2ndres 6227 fiintim 7001 residfi 7015 djuf1olemr 7129 endjusym 7171 dju1p1e2 7278 suplocexprlemell 7799 seq3val 10571 seqvalcd 10572 seq3-1 10573 seqf 10575 seq3p1 10576 seqf2 10579 seq1cd 10580 seqp1cd 10581 seqclg 10583 seqfeq4g 10642 wrdv 10970 setscom 12745 gsumwsubmcl 13200 gsumfzcl 13203 prdsinvlem 13312 rngmgpf 13571 mgpf 13645 crngridl 14164 upxp 14616 uptx 14618 cnmptid 14625 cnmpt1st 14632 cnmpt2nd 14633 |
| Copyright terms: Public domain | W3C validator |