| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssv | GIF version | ||
| Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| ssv | ⊢ 𝐴 ⊆ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2785 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
| 2 | 1 | ssriv 3201 | 1 ⊢ 𝐴 ⊆ V |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2773 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 df-in 3176 df-ss 3183 |
| This theorem is referenced by: ddifss 3415 inv1 3501 unv 3502 vss 3512 disj2 3520 pwv 3854 trv 4161 xpss 4790 djussxp 4830 dmv 4902 dmresi 5022 resid 5024 ssrnres 5133 rescnvcnv 5153 cocnvcnv1 5201 relrelss 5217 dffn2 5436 oprabss 6043 ofmres 6233 f1stres 6257 f2ndres 6258 fiintim 7042 residfi 7056 djuf1olemr 7170 endjusym 7212 dju1p1e2 7320 suplocexprlemell 7841 seq3val 10622 seqvalcd 10623 seq3-1 10624 seqf 10626 seq3p1 10627 seqf2 10630 seq1cd 10631 seqp1cd 10632 seqclg 10634 seqfeq4g 10693 wrdv 11027 setscom 12942 gsumwsubmcl 13398 gsumfzcl 13401 prdsinvlem 13510 rngmgpf 13769 mgpf 13843 crngridl 14362 upxp 14814 uptx 14816 cnmptid 14823 cnmpt1st 14830 cnmpt2nd 14831 |
| Copyright terms: Public domain | W3C validator |