![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssv | GIF version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv | ⊢ 𝐴 ⊆ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
2 | 1 | ssriv 3183 | 1 ⊢ 𝐴 ⊆ V |
Colors of variables: wff set class |
Syntax hints: Vcvv 2760 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 df-in 3159 df-ss 3166 |
This theorem is referenced by: ddifss 3397 inv1 3483 unv 3484 vss 3494 disj2 3502 pwv 3834 trv 4139 xpss 4767 djussxp 4807 dmv 4878 dmresi 4997 resid 4999 ssrnres 5108 rescnvcnv 5128 cocnvcnv1 5176 relrelss 5192 dffn2 5405 oprabss 6004 ofmres 6188 f1stres 6212 f2ndres 6213 fiintim 6985 residfi 6999 djuf1olemr 7113 endjusym 7155 dju1p1e2 7257 suplocexprlemell 7773 seq3val 10531 seqvalcd 10532 seq3-1 10533 seqf 10535 seq3p1 10536 seqf2 10539 seq1cd 10540 seqp1cd 10541 seqclg 10543 seqfeq4g 10602 wrdv 10930 setscom 12658 gsumwsubmcl 13068 gsumfzcl 13071 rngmgpf 13433 mgpf 13507 crngridl 14026 upxp 14440 uptx 14442 cnmptid 14449 cnmpt1st 14456 cnmpt2nd 14457 |
Copyright terms: Public domain | W3C validator |