![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssv | GIF version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv | ⊢ 𝐴 ⊆ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2630 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
2 | 1 | ssriv 3029 | 1 ⊢ 𝐴 ⊆ V |
Colors of variables: wff set class |
Syntax hints: Vcvv 2619 ⊆ wss 2999 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-11 1442 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-v 2621 df-in 3005 df-ss 3012 |
This theorem is referenced by: ddifss 3237 inv1 3319 unv 3320 vss 3330 disj2 3338 pwv 3652 trv 3948 xpss 4546 djussxp 4581 dmv 4652 dmresi 4767 resid 4768 ssrnres 4873 rescnvcnv 4893 cocnvcnv1 4941 relrelss 4957 dffn2 5163 oprabss 5734 ofmres 5907 f1stres 5930 f2ndres 5931 fiintim 6637 djuf1olemr 6744 dju1p1e2 6821 seq3val 9870 seq3-1 9873 seqf 9876 seq3p1 9880 seq3feq 9893 seq3shft2 9895 iseqseq3 9898 setscom 11529 |
Copyright terms: Public domain | W3C validator |