Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssv | GIF version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv | ⊢ 𝐴 ⊆ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
2 | 1 | ssriv 3146 | 1 ⊢ 𝐴 ⊆ V |
Colors of variables: wff set class |
Syntax hints: Vcvv 2726 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 df-in 3122 df-ss 3129 |
This theorem is referenced by: ddifss 3360 inv1 3445 unv 3446 vss 3456 disj2 3464 pwv 3788 trv 4092 xpss 4712 djussxp 4749 dmv 4820 dmresi 4939 resid 4940 ssrnres 5046 rescnvcnv 5066 cocnvcnv1 5114 relrelss 5130 dffn2 5339 oprabss 5928 ofmres 6104 f1stres 6127 f2ndres 6128 fiintim 6894 djuf1olemr 7019 endjusym 7061 dju1p1e2 7153 suplocexprlemell 7654 seq3val 10393 seqvalcd 10394 seq3-1 10395 seqf 10396 seq3p1 10397 seqf2 10399 seq1cd 10400 seqp1cd 10401 setscom 12434 upxp 12922 uptx 12924 cnmptid 12931 cnmpt1st 12938 cnmpt2nd 12939 |
Copyright terms: Public domain | W3C validator |