![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssv | GIF version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv | ⊢ 𝐴 ⊆ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
2 | 1 | ssriv 3184 | 1 ⊢ 𝐴 ⊆ V |
Colors of variables: wff set class |
Syntax hints: Vcvv 2760 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 df-in 3160 df-ss 3167 |
This theorem is referenced by: ddifss 3398 inv1 3484 unv 3485 vss 3495 disj2 3503 pwv 3835 trv 4140 xpss 4768 djussxp 4808 dmv 4879 dmresi 4998 resid 5000 ssrnres 5109 rescnvcnv 5129 cocnvcnv1 5177 relrelss 5193 dffn2 5406 oprabss 6005 ofmres 6190 f1stres 6214 f2ndres 6215 fiintim 6987 residfi 7001 djuf1olemr 7115 endjusym 7157 dju1p1e2 7259 suplocexprlemell 7775 seq3val 10534 seqvalcd 10535 seq3-1 10536 seqf 10538 seq3p1 10539 seqf2 10542 seq1cd 10543 seqp1cd 10544 seqclg 10546 seqfeq4g 10605 wrdv 10933 setscom 12661 gsumwsubmcl 13071 gsumfzcl 13074 rngmgpf 13436 mgpf 13510 crngridl 14029 upxp 14451 uptx 14453 cnmptid 14460 cnmpt1st 14467 cnmpt2nd 14468 |
Copyright terms: Public domain | W3C validator |