| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssv | GIF version | ||
| Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| ssv | ⊢ 𝐴 ⊆ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
| 2 | 1 | ssriv 3228 | 1 ⊢ 𝐴 ⊆ V |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2799 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ddifss 3442 inv1 3528 unv 3529 vss 3539 disj2 3547 pwv 3886 trv 4193 xpss 4826 djussxp 4866 dmv 4938 dmresi 5059 resid 5061 ssrnres 5170 rescnvcnv 5190 cocnvcnv1 5238 relrelss 5254 dffn2 5474 oprabss 6089 ofmres 6279 f1stres 6303 f2ndres 6304 fiintim 7089 residfi 7103 djuf1olemr 7217 endjusym 7259 dju1p1e2 7371 suplocexprlemell 7896 seq3val 10677 seqvalcd 10678 seq3-1 10679 seqf 10681 seq3p1 10682 seqf2 10685 seq1cd 10686 seqp1cd 10687 seqclg 10689 seqfeq4g 10748 wrdv 11082 setscom 13067 gsumwsubmcl 13524 gsumfzcl 13527 prdsinvlem 13636 rngmgpf 13895 mgpf 13969 crngridl 14488 upxp 14940 uptx 14942 cnmptid 14949 cnmpt1st 14956 cnmpt2nd 14957 |
| Copyright terms: Public domain | W3C validator |