![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssv | GIF version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv | ⊢ 𝐴 ⊆ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2762 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
2 | 1 | ssriv 3173 | 1 ⊢ 𝐴 ⊆ V |
Colors of variables: wff set class |
Syntax hints: Vcvv 2751 ⊆ wss 3143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-v 2753 df-in 3149 df-ss 3156 |
This theorem is referenced by: ddifss 3387 inv1 3473 unv 3474 vss 3484 disj2 3492 pwv 3822 trv 4127 xpss 4748 djussxp 4786 dmv 4857 dmresi 4976 resid 4978 ssrnres 5085 rescnvcnv 5105 cocnvcnv1 5153 relrelss 5169 dffn2 5381 oprabss 5976 ofmres 6154 f1stres 6177 f2ndres 6178 fiintim 6945 djuf1olemr 7070 endjusym 7112 dju1p1e2 7213 suplocexprlemell 7729 seq3val 10475 seqvalcd 10476 seq3-1 10477 seqf 10478 seq3p1 10479 seqf2 10481 seq1cd 10482 seqp1cd 10483 setscom 12519 rngmgpf 13251 mgpf 13325 crngridl 13804 upxp 14155 uptx 14157 cnmptid 14164 cnmpt1st 14171 cnmpt2nd 14172 |
Copyright terms: Public domain | W3C validator |