| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0inp0 | Structured version Visualization version GIF version | ||
| Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 0inp0 | ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nep0 5294 | . . 3 ⊢ ∅ ≠ {∅} | |
| 2 | neeq1 2990 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≠ {∅} ↔ ∅ ≠ {∅})) | |
| 3 | 1, 2 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≠ {∅}) |
| 4 | 3 | neneqd 2933 | 1 ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 ∅c0 4280 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-nul 4281 df-sn 4574 |
| This theorem is referenced by: eqsnuniex 5297 dtruALT 5324 zfpair 5357 |
| Copyright terms: Public domain | W3C validator |