Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0inp0 | Structured version Visualization version GIF version |
Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
0inp0 | ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nep0 5275 | . . 3 ⊢ ∅ ≠ {∅} | |
2 | neeq1 3005 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≠ {∅} ↔ ∅ ≠ {∅})) | |
3 | 1, 2 | mpbiri 257 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≠ {∅}) |
4 | 3 | neneqd 2947 | 1 ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 ∅c0 4253 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-nul 4254 df-sn 4559 |
This theorem is referenced by: eqsnuniex 5278 dtruALT 5306 zfpair 5339 dtruALT2 5353 |
Copyright terms: Public domain | W3C validator |