Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0inp0 | Structured version Visualization version GIF version |
Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
0inp0 | ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nep0 5280 | . . 3 ⊢ ∅ ≠ {∅} | |
2 | neeq1 3006 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≠ {∅} ↔ ∅ ≠ {∅})) | |
3 | 1, 2 | mpbiri 257 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≠ {∅}) |
4 | 3 | neneqd 2948 | 1 ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2943 ∅c0 4256 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-nul 4257 df-sn 4562 |
This theorem is referenced by: eqsnuniex 5283 dtruALT 5311 zfpair 5344 |
Copyright terms: Public domain | W3C validator |