![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0inp0 | Structured version Visualization version GIF version |
Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
0inp0 | ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nep0 5356 | . . 3 ⊢ ∅ ≠ {∅} | |
2 | neeq1 3002 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≠ {∅} ↔ ∅ ≠ {∅})) | |
3 | 1, 2 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≠ {∅}) |
4 | 3 | neneqd 2944 | 1 ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2939 ∅c0 4322 {csn 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-v 3475 df-dif 3951 df-nul 4323 df-sn 4629 |
This theorem is referenced by: eqsnuniex 5359 dtruALT 5386 zfpair 5419 |
Copyright terms: Public domain | W3C validator |