MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0inp0 Structured version   Visualization version   GIF version

Theorem 0inp0 5281
Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
0inp0 (𝐴 = ∅ → ¬ 𝐴 = {∅})

Proof of Theorem 0inp0
StepHypRef Expression
1 0nep0 5280 . . 3 ∅ ≠ {∅}
2 neeq1 3006 . . 3 (𝐴 = ∅ → (𝐴 ≠ {∅} ↔ ∅ ≠ {∅}))
31, 2mpbiri 257 . 2 (𝐴 = ∅ → 𝐴 ≠ {∅})
43neneqd 2948 1 (𝐴 = ∅ → ¬ 𝐴 = {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2943  c0 4256  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-dif 3890  df-nul 4257  df-sn 4562
This theorem is referenced by:  eqsnuniex  5283  dtruALT  5311  zfpair  5344
  Copyright terms: Public domain W3C validator