MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0inp0 Structured version   Visualization version   GIF version

Theorem 0inp0 5276
Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
0inp0 (𝐴 = ∅ → ¬ 𝐴 = {∅})

Proof of Theorem 0inp0
StepHypRef Expression
1 0nep0 5275 . . 3 ∅ ≠ {∅}
2 neeq1 3005 . . 3 (𝐴 = ∅ → (𝐴 ≠ {∅} ↔ ∅ ≠ {∅}))
31, 2mpbiri 257 . 2 (𝐴 = ∅ → 𝐴 ≠ {∅})
43neneqd 2947 1 (𝐴 = ∅ → ¬ 𝐴 = {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2942  c0 4253  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-nul 4254  df-sn 4559
This theorem is referenced by:  eqsnuniex  5278  dtruALT  5306  zfpair  5339  dtruALT2  5353
  Copyright terms: Public domain W3C validator