| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0inp0 | Structured version Visualization version GIF version | ||
| Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 0inp0 | ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nep0 5316 | . . 3 ⊢ ∅ ≠ {∅} | |
| 2 | neeq1 2988 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≠ {∅} ↔ ∅ ≠ {∅})) | |
| 3 | 1, 2 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≠ {∅}) |
| 4 | 3 | neneqd 2931 | 1 ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 ∅c0 4299 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-nul 4300 df-sn 4593 |
| This theorem is referenced by: eqsnuniex 5319 dtruALT 5346 zfpair 5379 |
| Copyright terms: Public domain | W3C validator |