Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  0inp0 Structured version   Visualization version   GIF version

Theorem 0inp0 5227
 Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
0inp0 (𝐴 = ∅ → ¬ 𝐴 = {∅})

Proof of Theorem 0inp0
StepHypRef Expression
1 0nep0 5226 . . 3 ∅ ≠ {∅}
2 neeq1 3052 . . 3 (𝐴 = ∅ → (𝐴 ≠ {∅} ↔ ∅ ≠ {∅}))
31, 2mpbiri 261 . 2 (𝐴 = ∅ → 𝐴 ≠ {∅})
43neneqd 2995 1 (𝐴 = ∅ → ¬ 𝐴 = {∅})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1538   ≠ wne 2990  ∅c0 4246  {csn 4528 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-ext 2773  ax-nul 5177 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-ne 2991  df-v 3446  df-dif 3887  df-nul 4247  df-sn 4529 This theorem is referenced by:  dtruALT  5257  zfpair  5290  dtruALT2  5304
 Copyright terms: Public domain W3C validator