MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0inp0 Structured version   Visualization version   GIF version

Theorem 0inp0 5295
Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
0inp0 (𝐴 = ∅ → ¬ 𝐴 = {∅})

Proof of Theorem 0inp0
StepHypRef Expression
1 0nep0 5294 . . 3 ∅ ≠ {∅}
2 neeq1 2990 . . 3 (𝐴 = ∅ → (𝐴 ≠ {∅} ↔ ∅ ≠ {∅}))
31, 2mpbiri 258 . 2 (𝐴 = ∅ → 𝐴 ≠ {∅})
43neneqd 2933 1 (𝐴 = ∅ → ¬ 𝐴 = {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wne 2928  c0 4280  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-nul 4281  df-sn 4574
This theorem is referenced by:  eqsnuniex  5297  dtruALT  5324  zfpair  5357
  Copyright terms: Public domain W3C validator